
A categorical semantics for causal structure

Aleks Kissinger and Sander Uijlen
Institute for Computing and Information Sciences, Radboud University

{aleks,suijlen}@cs.ru.nl

January 25, 2017

Abstract

We present a categorical construction for modelling both definite and indefinite causal struc-
tures within a general class of process theories that include classical probability theory and quan-
tum theory. Unlike prior constructions within categorical quantum mechanics, the objects of this
theory encode fine-grained causal relationships between subsystems and give a new method for
expressing and deriving consequences for a broad class of causal structures. To illustrate this point,
we show that this framework admits processes with definite causal structures, namely one-way
signalling processes, non-signalling processes, and quantum n-combs, as well as processes with in-
definite causal structure, such as the quantum switch and the process matrices of Oreshkov, Costa,
and Brukner. We furthermore give derivations of their operational behaviour using simple, dia-
grammatic axioms.

1 Introduction

Broadly, causal structures identify which events or processes taking place across space and time can,
in principle, serve as causes or effects of one another. For instance, the causal structure of relativistic
spacetime is given by demanding events can only have a causal influence on other events which can
be reached without exceeding the speed of light.

In the context of quantum theory, causal relationships between inputs and outputs to quantum
processes have been expressed in a variety of ways. Perhaps the simplest are in the form of non-
signalling constraints, which guarantee that distant agents are not capable of sending information
faster that the speed of light, e.g. to affect each other’s measurement outcomes [3]. Quantum strate-
gies [15] and more recently quantum combs [4] offer a means of expressing more intricate causal
relationships, in the form of chains of causally ordered inputs and outputs. Furthermore, it has been
shown recently that one can formulate a theory that is locally consistent with quantum theory yet
assumes no fixed background causal structure [22]. Interestingly, such a theory admits indefinite
causal structures. Namely, it allows one to express processes which inhabit a quantum superposition
of causal orders. If physically realisable, such processes can outperform any theory that demands
a fixed causal ordering in certain non-local games such as ‘guess your neighbour’s input’ [22] and
quantum computational tasks such as single-shot channel discrimination [6]. Perhaps even more
surprisingly, it has been shown recently that, in the presence of three or more parties, causal bounds
can be violated even within a theory that behaves locally like classical probability theory [2].

The key ingredient in studying (and varying) causal structures of processes is the development
of a coherent theory of higher order causal processes. That is, if we treat local agents (or events, labora-
tories, etc.) as first order causal processes, then the act of composing these processes in a particular
causal order should be treated as a second-order process. In this paper, we develop a categorical

1

framework for expressing and reasoning about such higher order processes. This starts from the
general context of a precausal category, which is a compact closed category that satisfies a four extra
axioms that provide enough additional structure to reason about causal relationships between sys-
tems and to prove simple no-go results such as no time-travel, i.e. the impossibility of process sending
information into its own causal past.

Most importantly, precausal categories have a special discarding process defined on each object,
which enables one to state the causality postulate for a process Φ : A→ B:

Φ

B

A

= A

This has a clear operational intuition: if the output of a process is discarded, it doesn’t matter which process
occurred. While seemingly obvious, this condition, originally given by [5] in the context of operational
probabilistic theories, is surprisingly powerful. For instance, it is equivalent to the non-signalling
property for joint processes arising from shared correlations [13].

Starting from a precausal category C, we give a construction of the ∗-autonomous category Caus[C]
of higher-order causal processes, into which the category of (first-order) causal processes satisfying
the equation above embeds fully and faithfully. Our main examples start from the precausal cate-
gories of matrices of positive real numbers and completely positive maps, which will yield categories
of higher-order classical stochastic processes and higher-order quantum channels, respectively.

While categorical quantum mechanics [1] has typically focussed on compact closed categories of
quantum processes, we show that this ∗-autonomous structure yields a much richer type system for
describing causal relationships between systems. A simple, yet striking example is in the use of ⊗
vs. � to form the types of processes on a joint system:

(A(A′)⊗ (B(B′) ← non-signalling processes

(A(A′)� (B(B′) ← all processes

Using this type system, we give logical characterisations of non-signalling and one-way non-signalling
processes and then prove that these are equivalent to the operational characterisations in terms of
their interactions with the discarding process. We then go on to characterise higher-order systems,
notably bipartite, and n-partite second-order causal processes and give several examples which are
known to exhibit indefinite causal structure, namely the OCB process from [22], the classical tripar-
tite process from [2], and an abstract version of the quantum switch defined in [6]. Finally, we prove
using just the structure of Caus[C] that the switch does not admit a causal ordering by reducing to
no time-travel.

Related work. This work was inspired by [23], which aims for a uniform description of higher-
order quantum operations in terms of generalised Choi operators. However, rather than relying on
the linear structure of spaces of operators, we work purely in terms of the ∗-autonomous structure
and the precausal axioms, which concern the compositional behaviour of discarding processes. The
construction of Caus[C] is a variant of the double gluing construction used in [17] to construct models
of linear logic. In the language of that paper, our construction consists of building the ‘tight orthog-
onality category’ induced by a focussed orthogonality on {1I} ⊆ C(I, I), then restricting to objects
satisfying the flatness condition in Definition 4.2. Since it is ∗-autonomous, Caus[C] indeed gives
a model of multiplicative linear logic, enabling us to enlist the aid of linear-logic based tools for
proving theorems about causal types. We comment briefly on this in the conclusion.

Acknowledgements. Both authors are grateful to Paulo Perinotti for his input and sharing a draft
version of [23]. We would also like to thank Časlav Brukner, Matty Hoban, and Sam Staton for useful
discussions. This work is supported by the ERC under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant no 320571.

2

2 Preliminaries

We work in the context of symmetric monoidal categories (SMCs). An SMC consists of a collection
of objects ob(C), for every pair of objects, A, B ∈ ob(C) a set C(A, B) of morphisms, associative
sequential composition ‘◦’ with units 1A for all A ∈ ob(C), associative (up to isomorphism) parallel
composition ‘⊗’ for objects and morphisms with unit I ∈ ob(C), and swap maps σA,B : A ⊗ B →
B ⊗ A, satisfying the usual equations one would expect for composition and tensor product. For
simplicity, we furthermore assume C is strict, i.e.

(A⊗ B)⊗ C = A⊗ (B⊗ C) A⊗ I = A = I ⊗ A

This is no loss of generality since every SMC is equivalent to a strict one. For details, [21] is a standard
reference.

We wish to treat SMCs as theories of physical processes, hence we often refer to objects as systems
and morphisms a processes. We will also extensively use string diagram notation for SMCs, where
systems are depicted as wires, processes and boxes, and:

g ◦ f :=
g

f
f ⊗ g := g f

1A := A 1I := σA,B :=
A B

B A

Note that diagrams should be read from bottom-to-top. A process ρ : I → A is called a state, a
process π : A→ I is called an effect, and λ : I → I is called a number. Depicted as string diagrams:

state := ρ effect := π number := λ

Numbers in an SMC always form a commutative monoid with ‘multiplication’ ◦ and unit the identity
morphism 1I . We typically write 1I simply as 1.

We will begin with a category C and construct a new category Caus[C] of higher-order causal
processes. In order to make this construction, we first need a mechanism for expressing higher-
order processes. Compact closure provides such a mechanism that is convenient within the graphical
language and already familiar within the literature on quantum channels, in the guise of the Choi-
Jamiołkowski isomorphism.

Definition 2.1. An SMC C is called compact closed if every object A has a dual object A∗. That is, for
every A there exists morphisms ηA : I → A∗ ⊗ A and εA : A⊗ A∗ → I, satisfying:

(εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ εA) ◦ (ηA ⊗ 1A∗) = 1A∗

We refer to ηA and εA as a cup and a cap, denoted graphically as and , respectively.

In this notation, the equations in Definition 2.1 become:

= A

A

A

A∗ = A∗

A∗

A∗

A

3

It is always possible to choose cups and caps in such a way that the canonical isomorphisms I∗ ∼= I,
(A⊗ B)∗ ∼= A∗⊗ B∗, and A ∼= A∗∗ are all in fact equalities. We will assume this is the case throughout
this paper.

Crucially, two morphisms in a compact closed category are equal if and only if their string di-
agrams are the same. That is, if one diagram can be continuously deformed into the other while
maining the connections between boxes. Hence, when we draw a string diagram, we mean any com-
position of boxes via cups, caps, and swaps which yields the given diagram, up to deformation. See
[24] for an overview of string diagram languages for monoidal categories.

Compact closed categories exhibit process-state duality, that is, processes f : A → B are in 1-to-1
correspondence with states ρ f : I → A∗ ⊗ B:

f 7→ f ρ f
(1)

Hence, we treat everything as a ‘state’ in C and write f : X as shorthand for f : I → X. In this
notation, states are of the form ρ : A, effects π : A∗, and general processes f : A∗ ⊗ B. Furthermore,
we won’t require ‘output’ wires to exit upward, and we allow irregularly-shaped boxes. For example,
we can write a process w : A∗ ⊗ B⊗ C∗ ⊗ D using ‘comb’ notation:

A

B

C

D

:=
w

A∗ B C∗ D
w (2)

Note that we adopt the convention that an A-labelled ‘input’ wire is of the same type as an A∗-
labelled ‘output’.

While both the LHS and the RHS in equation (2) are notation for the same process w, the LHS
is strongly suggestive of a second-order mapping from processes B → C to processes A → D.
Composition in this notation simply means applying the appropriate ‘cap’ processes to plug wires
together:

Φ

B

A

D

C

:=

DA∗

w
C∗B CB∗

Φ
w

Remark 2.2. Since oddly-shaped boxes don’t uniquely fix any ordering of systems with respect to⊗,
we will often ‘name’ each system by giving it a unique type and assume systems are permuted via
σ-maps whenever necessary. This is a common practice e.g. in the quantum information literature.

Our key examples will be Mat(R+) and CPM, which contain stochastic matrices and quantum
channels, respectively.

Example 2.3. The category Mat(R+) has as objects natural numbers. Morphisms f : m → n are
n×m matrices. Composition is given by matrix multiplication: (g ◦ f)j

i := ∑k f k
i gj

k, m⊗ n := mn and
f ⊗ g is the Kronecker product of matrices:

4

(f ⊗ g)kl
ij := f k

i gl
j

Consequently, the tensor unit I = 1, so states are column vectors ρ : 1 → n, effects are row vectors
π : n → 1, and numbers are λ ∈ R+. Mat(R+) is compact closed with n = n∗, where cups and caps
are given by the Kronecker delta δij:

ηij := δij =: εij

Example 2.4. The category CPM has as objects B(H), B(K), . . . for Hilbert spaces H, K, . . . and as
morphisms completely positive maps Φ : B(H) → B(K). B(H) ⊗ B(K) = B(H ⊗ K), hence I =
B(C) ∼= C. States are therefore positive operators and effects are (un-normalised) quantum effects,
i.e. completely positive maps of the form: π(ρ) := Tr(ρP), for some positive operator P. As with
Mat(R+), numbers are R+. CPM is also compact closed, with cups and caps given by the (un-
normalised) Bell state:

η = |Φ0〉〈Φ0| ε(ρ) = Tr(ρ |Φ0〉〈Φ0|)

where |Φ0〉 = ∑i |i〉⊗ |i〉. Consequentially, B(H)∗ = B(H) and equation (1) gives the basis-dependent
version, i.e. ‘Choi-style’, of the Choi-Jamiołkowski isomorphism [19].

The biggest convenience of a compact closed structure is also its biggest drawback: all higher-
order structure collapses to first-order structure! As we will soon see, there is a pronounced dif-
ference between first-order causal processes which we introduce in the next section, and genuinely
higher-order causal processes. Thus, while it is natural to take C to be compact closed, we expect
Caus[C] to be a different kind of category, which allows this genuine higher-order structure.

Definition 2.5. A ∗-autonomous category is a symmetric monoidal category equipped with a full and
faithful functor (−)∗ : Cop → C such that, by letting:

A(B := (A⊗ B∗)∗ (3)

there exists a natural isomorphism:

C(A⊗ B, C) ∼= C(A, B(C) (4)

As the notation and the isomorphism (4) suggest, A(B is the system whose states correspond
to processes from A to B. We adopt the programmers’ convention that⊗ has precedence over (and
(associates to the right:

A⊗ B(C := (A⊗ B)(C A(B(C := A((B(C)

Either expression above represents the system whose states are processes with two inputs. Indeed
(4) implies that A⊗ B(C ∼= A(B(C. Since C is symmetric, we can re-arrange the inputs at will,
i.e.

A(B(C ∼= B(A(C (5)

Unlike in a compact closed category, the object A(B can be different from simply A∗ ⊗ B. In-
deed any compact closed category is ∗-autonomous, where it additionally holds that:

A⊗ B ∼= (A∗ ⊗ B∗)∗ (6)

in which case:
A(B := (A⊗ B∗)∗ ∼= A∗ ⊗ B∗∗ ∼= A∗ ⊗ B

However, in a ∗-autonomous category, the RHS of (6) is not A⊗ B, but something new, called the
‘par’ of A and B:

5

A� B := (A∗ ⊗ B∗)∗ (7)

This new operation inherits its good behaviour from ⊗:

A� (B� C) ∼= (A� B)� C A� B ∼= B� A

So a compact closed category is just a ∗-autonomous category where ⊗ = �. However, this little
tweak yields a much richer structure of higher-order maps. We think of A⊗ B as the joint state space
of A and B, whereas A� B is like taking the space of maps from A∗ to B. For (first order) state spaces,
these are basically the same, but as we go to higher order spaces, A� B tends to be much bigger than
A⊗ B.

3 Precausal categories

Precausal categories give a universe of all processes, and provide enough structure for us to identify
which of those processes satisfy first-order and higher-order causality constraints.

As noted in [10, 11, 12, 5], the crucial ingredient for defining causality is a preferred discarding
process A from every system A into I. Using this effect, we can define causality as follows:

Definition 3.1. For systems A and B with discarding processes, a process Φ : A → B is said to be
causal if:

Φ

B

A

= A (8)

Intuitively, causality means that if we disregard the output of a process, it does not matter which
process occurred. We define discarding on A⊗ B and I in the obvious way:

A⊗B := A B I := 1 (9)

Hence causal states produce 1 when discarded:

ρ causal ⇐⇒ ρ = 1

Since discarding the ‘output’ of an effect π : A → I is the identity, there is a unique causal effect for
any system, namely discarding itself:

π causal ⇐⇒ π =

Example 3.2. For Mat(R+), the discarding process is a row vector consisting entirely of 1’s; it sends
a state to the sum over its vector entries:

=
(
1 1 · · · 1

)
ρ = ∑

i
ρi

So, causality is precisely the statement that a vector of positive numbers sums to 1, i.e. forms a
probability distribution. Consequentially, the causality equation (8) for a process Φ states that each
column of Φ must sum to 1. That is, Φ is a stochastic map.

Example 3.3. For CPM, discard is the trace. Hence causal states are density operators and causal
processes are trace-preserving completely positive maps, a.k.a. quantum channels.

6

Discarding not only allows us to express when a process is causal, it also allows us to represent
causal relationships between the systems involved. For example

Definition 3.4. A causal process Φ is one-way non-signalling with A before B (written A � B) if there
exists a process Φ′ : A→ A′ such that

Φ′

BA

=Φ

A′

B

B′ A′

A

(10)

It is one-way non signalling with B � A if there exists Φ′′ such that

= Φ′′

A B

A′ B′

Φ

B

B′

(11)

Such a process is called non-signalling if it is both non-signalling with A � B and B � A.

If A∗ has discarding, we can also produce a state for A:

:= A∗AA (12)

These ingredients allow us to make the following definition:

Definition 3.5. A precausal category is a compact closed category C such that:

(C1) C has discarding processes for every system, compatible with the monoidal structure as in (9).

(C2) For every (non-zero) system A, the dimension of A:

dA := A

is an invertible scalar.

(C3) C has enough causal states:∀ρ causal .

ρ

f = g

ρ

 =⇒ f = g

(C4) Second-order causal processes factorise:

∀Φ causal .

Φ =w

 =⇒



∃Φ1, Φ2 causal .

=

Φ1

Φ2

w



7

(C1) enables one to talk about causal processes within C. (C2) enables us to renormalise certain
processes to produce causal ones. For example, every non-zero system has at least one causal state,
called the uniform state. It is obtained by normalising (12):

d−1
A:=A A

Then:

d−1
A=A A d−1

A dA= 1=

Note that we allow C to have a zero object, in which case d0 = 0 is not required to be invertible.
(C3) says that processes are characterised by their behaviour on causal states. Since C is compact

closed, (C3) implies that it suffices to look only at product states to identify a process.

Proposition 3.6. For any compact closed category C, (C3) is equivalent to:
∀ρ1, ρ2 causal .

Φ

ρ1 ρ2

=

ρ1

Φ′

ρ2

 =⇒ Φ = Φ′ (13)

Proof. (C3) follows from (13) by taking one of the two systems involved to be trivial. Conversely,
assume the premise of (13). Applying (C3) one time yields:

Φ

ρ2

=

ρ2

Φ′

for all causal states ρ2. Bending the wire yields:

Φ

ρ2

=

ρ2

Φ′

Hence we can apply (C3) a second time. Bending the wire back down gives the result.

(C4) is perhaps the least transparent. It says that the only mappings from causal processes to
causal processes are ‘circuits with holes’, i.e. those mappings which arise from plugging a causal
process into a larger circuit of causal processes. This can equivalently be split into two smaller pieces,
which may look more familiar to some readers.

Proposition 3.7. For a compact closed category C satisfying (C1), (C2), and (C3), condition (C4) is
equivalent to the following two conditions:

(C4′) Causal one-way signalling processes factorise:


∃ Φ′ causal .

Φ = Φ′

 =⇒


∃ Φ1, Φ2 causal .

Φ =
Φ1

Φ2



8

(C5′) For all w : A⊗ B∗: 
∀Φ causal .

w Φ = 1

 =⇒


∃ρ causal .

w =

ρ


Proof. Assume (C4) holds, and let Φ satisfy the premise of (C4′). Then, for causal Ψ, we have:

Φ

Ψ

=

Ψ

Φ′

Φ′

Ψ
= =

Hence, by (C4) there exist causal Φ′1, Φ2 such that:

Φ
=

Φ2

Φ1

Deforming then gives the factorisation in (C4′).
To get to (C5′) from (C4), we take the input and output systems of w trivial, which gives:

=

Φ1

Φ2

w

Φ1

= =:
ρ

where the second ‘=’ follows from the fact that discarding is the unique causal effect. Conversely,
suppose (C4′) and (C5′) hold. Let w be a second order causal process. Then, for any causal ρ and Φ:

w

ρ

Φ = 1

So, by (C5′):

w

ρ

=

ρ′

=⇒
Lemma 3.8

w =

ρ ρ

w

Then, by (C3):

9

w = w =:

w′

Hence w satisfies the premise of (C4′), up to diagram deformation, where Φ := w and Φ′ := w′,
which implies that it factors as in (C4).

Lemma 3.8. For any w : A⊗ B∗:∃ρ . w =

ρ

 ⇐⇒

 = ww


Proof. (⇐) immediately follows from diagram deformation. For (⇒), assume the leftmost equation
above. Then we can obtain an expression for ρ by plugging the uniform state into w and applying
causality of the uniform state:

= ρw

ρ

=

Substituting this expression back in for ρ yields:

=w

ρ

=
w

= w
A

B

A

B

A

B

A

B

Example 3.9. Mat(R+) and CPM are both precausal categories. See appendix for proofs of condi-
tions (C1)-(C4).

Note that we can readily generalise one-way non-signalling from Definition (3.4) to n systems.

Definition 3.10. A process Φ is one-way non-signalling (A1 � . . . � An−1 � An) if

=

. . .

.

. . .
Φ Φ′

with Φ′ one-way non-signalling with A1 � . . . � An−1.

Then (C4′) implies an general n-fold version of itself:

Proposition 3.11. Let Φ be one-way non-signalling with A1 � . . . � An, then there exists Φ1, . . . , Φn
such that

10

Φ1

Φ2

Φn

. . .
=

. . .

. . .

Φ

Proof. For n = 2, this is just (C4′). Suppose the proposition is true for n− 1. Then because

=

. . .
Φ′

.

. . .
Φ

we have by (C4′) that there exists Φ′n−1 and Φn such that

=

. . .

. . .
. . .

Φ
. . .

Φ′n−1

C

Φn

Now Φ′n−1 : A1 ⊗ . . .⊗ An−1 → A′1 ⊗ . . .⊗ (A′n−1 ⊗ C) is again one-way non-signalling. Indeed,

=

. . .

. . .

. . .

Φ

. . .

Φ′n−1

C

Φn

= Φ′n−2

. . .

. . .

=

. . .

. . .

Φ′n−1

C

and we can cancel this last trace by (C2). By assumption Φ′n−1 factors and hence so does Φ.

While, as we shall soon see, precausal categories give us a source of processes exhibiting many
varieties of definite and indefinite causal structure, the axioms rule out certain, paradoxical causal
structures. To see this, we state our first no-go result for a precausal category C.

Theorem 3.12 (No time-travel). No non-trivial system A in a precausal category C admits time travel.
That is, if there exist systems B and C such that:

Φ

A B

CA

causal =⇒ ΦA

B

C

causal (14)

then A ∼= I.

Proof. For any causal process Ψ : A→ A, we can define:

11

Φ

A B

CA

:= Ψ

A

A

C

B

which is also a causal process. Then implication (14) gives:

ΦA

B

C
=

B
= 1=A Ψ

Applying (C5′), we have:

A =

ρ
A

A
=⇒ A =

ρ
A

A

for some causal state ρ : I → A. That is, ρ ◦ = 1A, and by definition of causality for ρ, ◦ ρ =
1I .

4 Constructing Caus[C]
We will now describe our main construction, the category Caus[C] of higher-order causal processes
for a precausal category C. To motivate this construction, we begin by looking at the properties of
the set of causal states for some system A:{

ρ : A
∣∣∣∣ ρ = 1

}
⊆ C(I, A) (15)

In the classical and quantum cases, these form convex subsets of real vector spaces (probability dis-
tributions in Rn and density matrices in SAn, respectively). We would like to recapture the fact that
this set is suitably closed without referring to convexity, so we appeal to duals instead.

Definition 4.1. For any set of states c ⊆ C(I, A), we can define the dual set c∗ ⊆ C(I, A∗) as follows:

c∗ :=

π : A∗
∣∣∣∣ ∀ρ ∈ c .

ρ

π

= 1


Taking the dual again, we get back to a set of states in A. It immediately follows from the defini-

tion that c ⊆ c∗∗. For the set of all causal states (15), we see that furthermore c = c∗∗.

Definition 4.2. A set of states c ⊆ C(I, A) is closed if c = c∗∗ and flat if there exist invertible scalars
λ, µ such that:

λ ∈ c µ ∈ c∗

Definition 4.3. For a precausal category C, the category Caus[C] has as objects pairs:

A := (A, cA ⊆ C(I, A))

where cA is closed and flat. A morphism f : A→ B is a morphism f : A→ B in C such that:

ρ ∈ cA =⇒ f ◦ ρ ∈ cB (16)

12

While this condition on morphisms is in terms of states, closure allows us to also state it in terms
of effects or numbers:

Proposition 4.4. For objects A, B in Caus[C] and a morphism f : A → B in C, the following are
equivalent:

(i) ρ ∈ cA =⇒ f ◦ ρ ∈ cB

(ii) π ∈ c∗B =⇒ π ◦ f ∈ c∗A

(iii) ρ ∈ cA, π ∈ c∗B =⇒ π ◦ f ◦ ρ = 1

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) follow immediately from the definition of (−)∗, so assume (iii) and
take any ρ ∈ cA. Then for all π ∈ c∗B, π ◦ (f ◦ ρ) = 1. Hence f ◦ ρ ∈ c∗∗B = cB.

Since a set of states is closed when c = c∗∗, it is natural to ask if (−)∗∗ forms a closure operation,
namely if it is idempotent. This is an immediate result of the following:

Lemma 4.5. For any set of states c we have c∗ = c∗∗∗.

Proof. First, note that:
c ⊆ d =⇒ d∗ ⊆ c∗.

Applying this to c ⊆ c∗∗ yields c∗∗∗ ⊆ c∗. But then, it is already the case that c∗ is contained in c∗∗∗,
so c∗∗∗ = c∗.

We will now show that Caus[C] has the structure of a ∗-autonomous category. To do this, we will
first define the tensor A⊗ B. For the sets of states cA and cB, we denote the set of all product states
as follows:

cA ⊗ cB := {ρ1 ⊗ ρ2 | ρ1 ∈ cA, ρ2 ∈ cB}

Then, cA⊗B is the closure of the set of all product states:

cA⊗B := (cA ⊗ cB)
∗∗

Lemma 4.6. For any effect π : A∗ ⊗ B∗ in C:
∀ ρ ∈ cA⊗B .

ρ

π
= 1

 ⇐⇒


∀ ρ1 ∈ cA, ρ2 ∈ cB .

ρ1

π

ρ2

= 1

 (17)

Proof. The LHS of (17) states that

π ∈ c∗A⊗B := ((cA ⊗ cB)
∗∗)∗ = (cA ⊗ cB)

∗∗∗

whereas the RHS states that π ∈ (cA ⊗ cB)
∗. Hence, (17) follows from Lemma 4.5.

Theorem 4.7. Caus[C] is an SMC, with tensor given by:

A⊗ B := (A⊗ B, cA⊗B)

and tensor unit I := (I, {1}).

Proof. The proof is in the appendix.

Now define objects A∗ := (A∗, cA∗) in the obvious way, by letting cA∗ := c∗A. Then

13

Lemma 4.8. The transposition functor (−)∗ : Cop → C:

A 7→ A∗ f ∗
A∗

B∗
:= f

A∗

B∗

B

7→f

A

(18)

lifts to a full and faithful functor (−)∗ : Caus[C]op → Caus[C], where A∗ := (A∗, cA∗).

Proof. The main part is showing that f ∗ is again a morphism, but this follows from the definition of
the star on sets of states. A full proof is in the appendix.

We now have enough structure to define A(B := (A ⊗ B∗)∗. However, it is enlightening to
give an explicit characterisation of the set cA(B. This will be no surprise:

Lemma 4.9. For objects A, B ∈ Caus[C]:

cA(B =

 f : A∗ ⊗ B
∣∣∣∣ ∀ρ ∈ cA, π ∈ c∗B .

π

ρ

f = 1


Proof. This follows by simplifying:

c(A⊗B∗)∗ = c∗(A⊗B∗) = (cA ⊗ cB∗)
∗∗∗ = (cA ⊗ c∗B)

∗

and noting that f ∈ (cA ⊗ c∗B)
∗ is precisely the statement given in the lemma.

Theorem 4.10. For any precausal category C, Caus[C] is a ∗-autonomous category where I = I∗.

Proof. Since compact closed categories already admit an interpretation for (satisfying (4), it suffices
to show that this isomorphism lifts to Caus[C]. This follows from the application of Lemma 4.6. The
complete proof is in the appendix.

Since Caus[C] is ∗-autonomous, we can also define the ‘par’ of two systems A � B. Since � is
related to (via A� B ∼= A∗(B, Lemma 4.9 also yields an explicit form for cA�B by replacing A
with A∗:

cA�B =

ρ : A⊗ B
∣∣∣∣ ∀π ∈ c∗A, ξ ∈ c∗B .

π

ρ

ξ
= 1


Note that the process f : A∗ ⊗ B has become a bipartite state ρ : A⊗ B. That is, the states ρ : A� B
are states which are normalised for all product effects. Symbolically, the two monoidal products are
defined as follows:

cA⊗B = (cA ⊗ cB)
∗∗ cA�B = (c∗A ⊗ c∗B)

∗

One can easily check that (c∗A ⊗ c∗B) ⊆ (cA ⊗ cB)
∗. Thus, since (−)∗ reverses subset inclusions, that

cA⊗B ⊆ cA�B. Consequently, the identity 1A⊗B in C lifts to a canonical embedding A⊗ B =⇒ A�B
in Caus[C]. This agrees with the intuition given in Section 3 that A� B is the ‘larger’ of the two ways
to combine A and B into a joint system.

Remark 4.11. A ∗-autonomous category with coherent isomorphism I ∼= I∗, such as Caus[C], is also
called an ISOMIX category [8]. This innocent-looking extra condition actually gives a great deal more
structure. For instance, even though we showed it concretely, the existence of a canonical morphism
A⊗ B→ A� B is implied purely from this extra structure.

14

Rather than thinking of Caus[C] as a totally new category constructed from C, it is useful to think
of it as endowing the processes in C with a much richer type system. As in the compact closed case,
it suffices to consider only processes out of I and we use ρ : X as shorthand for ρ : I → X. However,
unlike before, we will often use a statement of the form ρ : X as a proposition about a state ρ ∈ C(I, X).

Proposition 4.12. For a system X = (X, cX) in Caus[C] and a state ρ ∈ C(I, X), ρ : X if and only if
ρ ∈ cX .

Proof. Since 1 is the unique state in cI , the result follows immediately from the definition of mor-
phism in Caus[C]:

ρ : X ⇐⇒ ρ ◦ 1 ∈ cX ⇐⇒ ρ ∈ cX

From now on, we will use ρ : X and ρ ∈ cX interchangeably without further comment. We will
also mix the graphical notation with the type-theoretic. So, for instance, if we write:

X

w

v

A

B

C

D

Y

: A((B(C)(D

this should be interpreted as a morphism in C(I, A∗ ⊗ B ⊗ C∗ ⊗ D), along with the assertion that
this morphism has type A((B(C)(D. In particular, diagrams always depict C-morphisms, as
opposed to Caus[C]-morphisms, so there is no ambiguity about whether parallel composition means
⊗ or �.

Furthermore, if we state that two types are isomorphic without giving the isomorphism explicitly,
it should be understood that the underlying isomorphism in C is just the identity, up to a possible
permutation of systems. In particular, X ∼= Y implies that ρ : X if and only if ρ : Y .

5 First order systems

For any precausal category C, we can always form the SMC of (first-order) causal processes Cc by
restricting just to those processes satisfying the causality equation (8). Since Caus[C] is supposed to
contain first and higher-order causal processes, one would naturally expect Cc to embed in Caus[C].

Definition 5.1. A system A = (A, cA) in Caus[C] is called first order if it is of the form (A, { A}∗).

Note that { A}∗ is precisely the set (15) of causal states of type A. Clearly this set is flat and
closed. Indeed, this was the motivation for these conditions in the first place. Now, we show that the
processes between first-order systems in Caus[C] are exactly as expected.

Proposition 5.2. Let A, B be first-order systems. Then f is a morphism from A to B if and only if it
is causal.

Proof. We first compute c∗A for a first-order system. Suppose π ∈ c∗A. Then for all causal states ρ,
π ◦ ρ = 1 = A ◦ ρ, so by (C3) π = A. Hence c∗A = { A}.

Now, by Proposition 4.4, Φ ∈ C(A, B) is a morphism from A to B if and only if for every π ∈ c∗B,
π ◦Φ ∈ c∗A. Since both of these sets of effects only contain discarding, this reduces to the causality
equation (8).

15

Furthermore, first-order systems are closed under ⊗.

Proposition 5.3. For first order systems A, B, A⊗ B is also a first-order system, given by:

A⊗ B = (A⊗ B, { A B}∗)

Proof. It suffices to show that c∗A⊗B = { A B}. Let π ∈ c∗A⊗B, then for all causal states ρ1 ∈ cA, ρ2 ∈
cB:

ρ1

π

ρ2

= 1

Hence, by Proposition 3.6, π = A B.

Corollary 5.4. There exists a full, faithful, monoidal embedding of the category Cc of causal processes
into Caus[C] via:

A 7→ (A, { A}∗) f 7→ f

Hence, the full sub-category of first-order systems and processes behaves as expected; it is equiv-
alent to Cc. Perhaps a more surprising corollary to Proposition 5.3 is the following.

Corollary 5.5. Let A and B be first order systems, then:

A⊗ B ∼= A� B

Proof. cA�B := (c∗A ⊗ c∗B)
∗ = { A B}∗ = cA⊗B.

So for first-order systems, there is really only one way to form the ‘joint system’. However, we
will now see that for higher-order systems, this is very much not the case.

6 Higher-order systems

While it is important that the category of causal processes embeds fully and faithfully in Caus[C]
when one restricts to first-order systems, the chief interest of Caus[C] are its higher-order systems.
The goal of this section is to show that certain collections of maps fit nicely within the developed
type theory.

The first non-trivial second-order system that it is natural to consider is A(B for first-order
systems A, B. The isomorphism (4) for ∗-autonomous categories restricts to:

Caus[C](A, B) ∼= Caus[C](I, A(B)

so ‘states’ Φ : A(B are in bijective correspondence with morphisms from A to B in Caus[C]. That
is, they are precisely the causal processes from A to B.

Now, starting from first-order systems A, A′, B, B′, we have two ways to form the ‘joint system’
from A(A′ and B(B′, via ⊗ and �. Before we characterise these systems, we examine the dual
of a second-order system.

If we take a process w : (A(B)∗ in the dual system, we know from (C4) that that w must split
into two pieces. In fact, using flatness, we can strengthen this condition by only requiring B to be
first-order.

16

Lemma 6.1. For any system X, first-order system B, and process w : (X (B)∗, there exists ρ : X
such that:

w =

ρ
X

A A

X
(19)

Proof. Since B is first-order, c∗B = { B} and by flatness, for some µ, µ X ∈ c∗X . Hence, for any (first-
order) causal process Φ : X → B, we have B ◦ µΦ = µ X . Hence µΦ is of type X → B. It follows
by definition of (X (B)∗ that:

w Φµ = Φw µ = 1

That is, µw sends every causal process Φ to 1, so by (C5′): w =

ρ′

µ

 =⇒

 w =

ρ′µ−1


It is then straightforward to show that ρ := µ−1ρ′ is a state of X, e.g. by plugging the uniform state
for system B into both sides of the equation above.

Equivalently, by Lemma 3.8, w : (X (A)∗ implies:

= ww (20)

Theorem 6.2. For first-order systems A, A′, B, B′, a process Φ is of type (A(A′)⊗ (B(B′) if and
only if it is causal and non-signalling.

Proof. First assume that Φ : (A(A′)⊗ (B(B′). Then, since discarding B′ is causal, we can regard
it as a morphism B′ : B′ → I. Hence by functoriality of ⊗ and (, we have:

Φ

A B

B′A′

: (A(A′)⊗ (B(I)

Then we can transform to an equivalent type as follows:

(A(A′)⊗ (B(I) ∼= (A(A′)⊗ B∗

∼= ((A(A′)∗ � B)∗

∼= ((A(A′)(B)∗

Hence, by Lemma 3.8, Φ splits as B : B and Φ′ : A(A′. This gives exactly the first non-signalling
equation:

Φ′

BA

=Φ

A′

B

B′ A′

A

17

The second equation is shown similarly, by plugging in A′ .
Conversely, suppose that Φ is causal and non-signalling. Then it satisfies the two non-signalling

equations in Definition 3.4. Hence by (C4′), it can be factored in two ways:

Φ
Φ1

Φ2 Ψ2

Ψ1

= =

for causal processes Φi, Ψi.
Now, take any effect w : ((A (A′)⊗ (B (B′))∗ ∼= (B (B′) ((A (A′)∗. For any causal

state ρ,

ρ

Φ2 : B(B′

Plugging this into one side of w gives:

w
Φ2

ρ
: (A (A′)∗

Applying equation (20) gives:

w
Φ2

ρ
=

Φ2
ρ

w

Hence by enough causal states we have

w
Φ2 =

Φ2

w

It then follows that

w

Φ =
Φ2

w

Φ1

=
Φ2

w

Φ1

= =

w

Φ Ψ1

w

1=

Therefore Φ : ((A (A′)⊗ (B (B′))∗∗ = (A (A′)⊗ (B (B′).

18

The proof above also generalises straightforwardly to show that a process is n-paritite non-
signalling, i.e. for all i:

... ...
A′1 A′n

Φ′

AmA1 An

......
A1 Am

...

A′1 ... A′n

An

Φ
...

...A′m
A′m−1 A′m+1

=

if and only if:
Φ : (A1 (A′1)⊗ (A2 (A′2)⊗ . . .⊗ (An (A′n)

Theorem 6.3. For first-order systems A, A′, B, B′, a process Φ is of type (A(A′)� (B(B′) if and
only if it is causal. That is:

(A(A′)� (B(B′) ∼= A⊗ B(A⊗ B′

Proof. We rely on the relationship between (and �:

(A(A′)� (B(B′) ∼= A∗ � A′ � B∗ � B′

∼= A∗ � B∗ � A′ � B′

∼= (A∗ � B∗)∗(A′ � B′

∼= A⊗ B(A′ � B′

Then, since A′ and B′ are first-order, A′ � B′ ∼= A′ ⊗ B′, which completes the proof.

So (A(A′)� (B(B′) forms the joint system consisting of all causal processes from A⊗ B to
A′ ⊗ B′, including the signalling ones, e.g.

A B

B A
: (A(B)� (B(A)

Hence, ⊗ and � represent two extremes by which A(A′ and B(B′ can be combined, namely
by requiring them to be non-signalling or imposing no non-signalling conditions. In the next section,
we will see how to recover types for one-way signalling.

6.1 One-way signalling and combs

Theorem 6.4. For first order systems A, A′, B, B′, a process w is one-way non-signalling (A � B) if
and only if:

w

A B

B′A′

: A ((A′ (B) (B′

Proof. Suppose Φ is A � B. First, we deform Φ to put the two A-labelled systems below the two
B-labelled systems:

w

A B

B′A′

7→

A

B

B′

A′
w

19

The one-way non-signalling equation (10) then becomes:

A

B

B′

A′
w =

w′
A′
B

A

(21)

Now, by (5) we have:
A((A′(B)(B′ ∼= (A′(B)(A(B′

So, for w to be a member of the above type, it must send all causal processes Ψ : A′ (B to causal
processes. This immediately follows from (21):

w =

w′
Φ Φ = w′ =

Conversely, if w sends causal processes to causal processes, it factorises as in (C4), which implies
(21):

w =

Φ2

Φ1 Φ1

=

Hence, one-way non-signalling admits a more general class of processes than (two-way) non-
signalling.

Remark 6.5. One can show the embedding of non-signalling processes into one-way non-signalling
processes purely at the level of types by relying on the linear distributivity property of ∗-autonomous
categories [9]. Namely, in any ∗-autonomous category, there exists a canonical mapping:

(A� B)⊗ C → A� (B⊗ C)

We can use this to construct an embedding of two-way non-signalling processes into one-way:

(A(A′)⊗ (B(B′) ∼= (A∗ � A′)⊗ (B∗ � B′)

→ A∗ � (A′ ⊗ (B∗ � B′))

→ A∗ � (A′ ⊗ B∗)� B′

∼= A((A′(B)(B′

Following [23], we generalise from 2-party, one-way non-signalling processes to n-party pro-
cesses by recursively defining a the type of n-combs.

Definition 6.6. The n-combs Cn are defined by

• C0 = I,

20

• Ci+1 = B−i (Ci (Bi+1.

A 1-comb has type B0 (I (B1
∼= B0 (B1, so it is just a causal process. For higher combs, the

‘−i’ is employed to maintain the left-to-right order of indices. For example, a 3-comb has type:

B−2

B−1

B0

B1

B2

B3

w : B−2 ((B−1 ((B0 (B1)(B2)(B3

When necessary, we rename Ai := B2i−n−1 and A′i := B2i−n to obtain e.g.

A1 ((A′1 ((A2 (A′2)(A3)(A′3

This recursive definition carries the following intuition. If we think of an n comb as a communi-
cation protocol with n input/output steps, then an (n + 1)-comb is an (n + 1) step communication
protocol, namely something which takes an initial input, then runs an n-step communication proto-
col, and produces a final output. Hence, we can represent the overall process of two agents running
a communication protocol by plugging together Alice’s n-comb and Bob’s (n− 1)-comb:

...
...

w w′ : A1 (A′n

We give an alternative characterisation for combs in Caus[C], which will relate to one-way non-
signalling processes.

Lemma 6.7. For any n-comb w : Cn, discarding the output A′n separates as follows, for some w′:

w = w′
... ...

(22)

Proof. Plugging any causal state into the first input of w and discarding the last output yields:

w

ρ

...
: Cn−1 (I

21

Then:

Cn−1 (I ∼= C∗n−1
∼= (B−(n−2)(Cn−2 (Bn−1)

∗

∼= (B−(n−2) ⊗ Cn−2 (Bn−1)
∗

Hence by Lemma 6.1, in particular equation (20), we obtain:

w

ρ

...

=

ρ

...

w

The result then follows from enough causal states.

Note that we haven’t actually said that w′ is itself an (n− 1)-comb. We will show this now.

Theorem 6.8. w is an n-comb, i.e. w : Cn, if and only if it separates as in equation (22) for some
w′ : Cn−1.

Proof. By induction. For n = 1 the theorem is true because a 0-comb is always I. Suppose the
theorem is true for n. Let w be an (n + 1)-comb. We need to show that w′ is an n-comb. So let y be
any (n− 1)-comb. Then, if we form the process:

... y′
(23)

then clearly discarding the top output results in an (n− 1) comb (namely y) and a discard on the top
input. So by the induction hypotheses, (23) is an n-comb. Therefore we have

...
...

w y
= ...

w′ y...
= = ... yw′ ...

(∗) (∗∗)

where (∗) follows from the definition of (n + 1)-comb and (∗∗) is Lemma 6.7. Hence w′ sends any
(n− 1)-comb to a causal map, so w′ is itself an n-comb.

Conversely, let w′ in equation (22) be an n-comb, and take any n-comb y. Then by the induction
hypothesis, discarding the top output of y separates as discarding and an (n− 1)-comb y′. Hence:

22

...
...w y =

...w′ ...
y

...
w′ ...

y′= =

so w is an (n + 1)-comb.

Hence, n-combs can be characterised inductively in exactly the same way as n-party one-way
signalling processes. Since 1-combs are just causal processes, the following is immediate.

Corollary 6.9. For first order systems A1, A′1, . . . , An, A′n, a map w : A1⊗ . . .⊗ An → A′1⊗ . . .⊗ A′n is
one-way non-signalling (A1 � . . . � An) if and only if it is of type A1 ((A′1 ((. . .) (An) (A′n.
That is, it is an n-comb.

Proposition 3.11, then generalises the characterisation theorem for quantum combs in [7] to Caus[C]
for any precausal C: an n-comb always factors as a sequence of ‘memory channels’, i.e. a composition
of causal processes of the form:

w =

...

Φ1

Φ2

Φn
...

6.2 SOC2 and SOCn processes

In this section we shall take a look at process matrices, introduced in [22], to investigate processes
which do not have a definite causal order. Such processes were called bipartite second-order causal
in [18].

Definition 6.10. A process w : (A∗ ⊗ A′)⊗ (B∗ ⊗ B′) → C∗ ⊗ C is called bipartite second-order causal
(SOC2) if for all causal ΦA, ΦB the following map is causal:

w ΦBΦA

So SOC2 maps send products of causal processes to a causal process. The following shows that
SOC2 processes are actually normalized on all non-signalling maps, not just product maps.

Theorem 6.11. For first order systems A, A′, B, B′, C, C′, a process w is SOC2 if and only if it is of type
(A (A′)⊗ (B (B′) ((C (C′).

23

Proof. Since products of causal processes are non-signalling, they are in (A (A′)⊗ (B (B′), so
any process of the above type is indeed SOC2.

For the converse, let π be an effect of type (C (C′)∗. Then π ◦w is an effect on products of causal
processes. Now Lemma 4.6 states that π ◦ w yields 1 for product states if and only if it yields 1 for
any state in the tensor product. Hence it is an effect for (A (A′)⊗ (B (B′), which by Theorem 6.2
are precisely the non-signalling maps. By Proposition 4.4 this means w : (A (A′)⊗ (B (B′) (
(C (C′)

This represents a significant strengthening of the result in [18], which was only able to show
that SOC2 extends to all so-called strongly non-signalling processes, which are a special case of non-
signalling processes.

Special cases of SOC2 processes are 3-combs which arise from fixing a causal ordering between A
and B:

C ((A((A′(B)(B′)(C′

C ((B((B′(A)(A′)(C′

Indeed one can show the containment of either of these types into the type of SOC2 processes using a
simple calculation on types much like in Remark 6.5. However, the most interesting SOC2 processes
are those which do not arise from combs.

Example 6.12. The OCB process is defined as follows:

+ 1
4
√

2


σz

σz

+

σz σx

σz


where σx, σz are Pauli matrices and associated effects. Note that, while the individual summands are
not positive, the result is, yielding a process in CPM. The fact that it is an SOC2 process in Caus[CPM]
follows straightforwardly from the fact that the Pauli matrices are trace-free. Furthermore, it was
shown in [22] that it can be used to win certain non-local games with higher probability than any
causally-ordered process, due to the fact that Bob can, to some extent, choose a causal ordering
between himself and Alice a posteriori by his choice of quantum measurement.

Theorem 6.11 extends naturally to a characterisation of n-partite second-order causal processes
(SOCn) via:

(A1 (A′1)⊗ . . .⊗ (An (A′n)((C (C′)

Example 6.13. Not all processes exhibiting indefinite causal order are quantum. Indeed the following
process:

+1
8




− −

− − − −

−

−

+ +

−

− −−

is an SOC3 process in Caus[Mat(R+)], where the ‘−’ labelled states and effects with values (1,−1),
given as column vectors and row vectors, respectively. It was shown in [2] that this process, as well as
a generalisation to an SOCn process for odd n, was incompatible with any pre-defined causal order.

24

An interesting family of SOC2 processes are switches, where an auxiliary system is used to control
the causal ordering of the input processes.

Definition 6.14. For first-order systems X and A = A′ = B = B′ = C = C′, a switch is a process of
type:

s

X

A

A′

B

B′

C

C′

: X ⊗ C ((A(A′)⊗ (B(B′)(C′ (24)

in Caus[C], such that for distinct states ρ0, ρ1 : X, we have:

s

ρ0

= s

ρ1

= (25)

We now see some concrete examples of the switch, as a higher-order stochastic map and as a
quantum channel.

Example 6.15. For C = Mat(R+), the classical switch process is uniquely fixed by (25) if we let X = 2
and:

ρ0 :=
(

1
0

)
ρ1 :=

(
0
1

)
Indeed, s is given by:

ρ′0

+

ρ′1

(26)

where ρ′i := ρT
i . Then, since ρ′0 + ρ′1 = , we have:

ρ′0

+

ρ′1

Φ1 Φ2 Φ2Φ1=s Φ2Φ1

+ ρ′1= ρ′0 =ρ′0

)(
ρ′1+=

Hence s has the correct type shown in (24).

Example 6.16. For C = CPM, a switch process can be defined just as in (26), by letting X = B(C2)
and replacing ρi and ρT

i with the appropriate qubit projections and their associated quantum effects:

ρi := |i〉〈i| ρ′i(µ) := Tr(|i〉〈i| µ)

25

This is precisely theZ superoperator defined in [6], which defines a (decoherent) switch for quantum
channels.

However, unlike Example 6.15, this channel is not uniquely fixed by (25), since ρ0, ρ1 do not form
a basis for B(C2). For instance, plugging ρ := |+〉〈+| into X of this process yields a classical mixture
of the two possible wirings:

+1
2

1
2

One can also define a coherent quantum switch satisfying (25), where inputting the state |+〉〈+| into
X yields a quantum superposition of causal orderings. See [6] for details.

Theorem 6.17. A switch cannot be causally ordered. That is, the type of s does not restrict to one of
the following:

X ⊗ C ((A((A′(B)(B′)(C′

X ⊗ C ((B((B′(A)(A′)(C′

unless A ∼= I.

Proof. Suppose s is causally ordered with A � B. That is:

s : X ⊗ C ((A((A′(B)(B′)(C′

Plugging states and effects into s yields a simpler type:

s

ρ1

X

A

A′

B

B′
: (A((A′(B)(B′)∗ (27)

By Theorem 6.4 characterising one-way signalling processes, one can verify that for any Φ : A(B′,
we have:

Φ

A B

A′ B′

: A((A′(B)(B′

Since this is the dual type of (27), composing the two yields

s

ρ1

Φ
1 = =

Φ
= ΦA

which violates no time-travel, Theorem 3.12. Hence A ∼= I. The second causal ordering can be ruled
out symmetrically, by plugging the state ρ0 into s.

26

7 Conclusion and Future Work

In order to study higher order processes, we have created a categorical construction which sends
certain compact closed categories C to a new category Caus[C]. There is a fully faithful embedding
of the category of first order causal processes of C into Caus[C], but we are also able to talk about
genuine higher order causal processes. This new category also has a richer structure which allows
us to develop a type theory for its objects. We classify certain kinds of processes in this type theory,
such as the non-signalling processes, one-way non-signalling processes, combs and bipartite second
order causal processes and show that the type theoretic characterisation of these processes coincides
with the operational one involving discarding.

The construction of Caus[C] can be generalised straightforwardly to encompass ‘sub-causal’ pro-
cesses as well, by replacing the definition of (−)∗ with:

c∗ = {π : A∗ | ∀x ∈ c, π ◦ x ∈ M}

for a suitable sub-monoid M of C(I, I) to get CausM[C]. Then, we recover Caus[C] as Caus{1}[C].
However, we obtain other interesting examples by varyingM. In the case of CPM, I = R+. Taking
M to be the unit interval, Caus[0,1][C] has trace non-increasing CP maps as its first-order processes,
and generalisations thereof at higher orders. Alternatively, we can build a category of ‘causal pro-
cesses with failure’ by letting M be {0, 1}. Exploring the properties of these categories, and how
they relate to Caus[C] is a subject of future work. Another subject for future research is the relation
between the types of causal systems and multiplicative linear logic (MLL). Since ∗-autonomous cate-
gories are a model of MLL, MLL provides a (decidable) fragment of the logic of type containment in
Caus[C]. This opens up possibilities to automate many proofs using existing automated linear logic
provers. Indeed many of the type relationships in this paper were discovered with the help of such
a tool, called llprover [25].

A third direction for future work is to generalise from linear causal orderings to causal orderings
provided by an arbitrary directed acyclic graph and hence explore connections with other dag-based
approaches for modelling causal structures for quantum (or more general) processes [20, 16].

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 415–425. IEEE Computer
Society, 2004. arXiv:quant-ph/0402130.

[2] Ämin Baumeler, Adrien Feix, and Stefan Wolf. Maximal incompatibility of locally classical
behavior and global causal order in multiparty scenarios. Phys. Rev. A, 90:042106, Oct 2014.

[3] D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill. Causal and localizable quantum
operations. Physical Review A, 64:052309, November 2001.

[4] G. Chiribella, G. M. D’Ariano, and P. Perinotti. Quantum circuit architecture. Phys. Rev. Lett.,
101:060401, Aug 2008.

[5] G. Chiribella, G. M. D’Ariano, and P. Perinotti. Informational derivation of quantum theory.
Physical Review A, 84(1):012311, 2011.

[6] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron. Quantum computations without
definite causal structure. Physical Review A, 88:022318, August 2013.

27

[7] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Theoretical framework for
quantum networks. Phys. Rev. A, 80:022339, Aug 2009.

[8] J.R.B. Cockett and R.A.G. Seely. Proof theory for full intuitionistic linear logic, bilinear logic,
and mix categories. Theory and Applications of Categories, 1991.

[9] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of Pure and Applied
Algebra, 114(2):133 – 173, 1997.

[10] B. Coecke. Terminality equals non-signalling. 2014.

[11] B. Coecke and A. Kissinger. Categorical quantum mechanics I: causal quantum processes.
In E. Landry, editor, Categories for the Working Philosopher. Oxford University Press, 2016.
arXiv:1510.05468.

[12] B. Coecke and R. Lal. Causal categories: Relativistically interacting processes. Foundations of
Physics, page to appear, 2012. arXiv:1107.6019.

[13] Bob Coecke. Terminality implies no-signalling ...and much more than that. New Generation
Computing, 34(1):69–85, 2016.

[14] T. Eggeling, D. Schlingemann, and R. F. Werner. Semicausal operations are semilocalizable. EPL
(Europhysics Letters), 57(6):782, 2002.

[15] John Watrous Gus Gutoski. Toward a general theory of quantum games.

[16] Joe Henson, Raymond Lal, and Matthew F Pusey. Theory-independent limits on correlations
from generalized bayesian networks. New Journal of Physics, 16(11):113043, 2014.

[17] Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear logic. Theo-
retical Computer Science, 294(12):183 – 231, 2003. Category Theory and Computer Science.

[18] Aleks Kissinger and Sander Uijlen. Picturing indefinite causal structure. In Quantum Physics
and Logic, 2016, 2017.

[19] M. Leifer. The Choi-Jamiolkowski Isomorphism: You’re Doing it Wrong! Blog
post, http://mattleifer.info/2011/08/01/the-choi-jamiolkowski-isomorphism-youre-doing-it-
wrong.

[20] M. S. Leifer and Robert W. Spekkens. Towards a formulation of quantum theory as a causally
neutral theory of bayesian inference. Phys. Rev. A, 88:052130, Nov 2013.

[21] S. Mac Lane. Categories for the working mathematician. Springer-verlag, 1998.

[22] O. Oreshkov, F. Costa, and C. Brukner. Quantum correlations with no causal order. Nature
Communication, 1092(3).

[23] Paulo Perinotti. Causal structures and the classification of higher order quantum computations.
2016.

[24] P. Selinger. A survey of graphical languages for monoidal categories. In B. Coecke, edi-
tor, New Structures for Physics, Lecture Notes in Physics, pages 275–337. Springer-Verlag, 2011.
arXiv:0908.3347.

[25] Naoyuki Tamura. User’s guide of a linear logic theorem prover (llprover. Technical report, 1995.

28

Proof that Caus[C] is ∗-autonomous

In this part of the appendix we will give full proofs leading up to the fact that Caus[C] is indeed a
∗-autonomous category.

Theorem. Caus[C] is an SMC, with tensor given by:

A⊗ B := (A⊗ B, cA⊗B)

and tensor unit I := (I, {1}).

Proof. First we show that A⊗ B and I are indeed objects in Caus[C], namely the cA⊗B and cI are flat
and closed. This is immediate for cI , so we focus on cA⊗B.

Closure follows immediately from Lemma 4.5, so it remains to show flatness. Since cA and cB are
flat, then for some λ, λ′:

λ ∈ cA, λ′ ∈ cB

hence:
λλ′ ∈ cA ⊗ cB ⊆ cA⊗B

Similarly, for some µ, µ′:
µ ∈ c∗A, µ′ ∈ c∗B

So, for all ρ ∈ cA, ρ′ ∈ cB, we have:

µµ′ ρ ρ′ = 1

which implies, by Lemma 4.5:

µµ′ ∈ (cA ⊗ cB)
∗ = (cA ⊗ cB)

∗∗∗ =: c∗A⊗B

Next, we show associativity and unit laws for ⊗. For any object A, the unit laws A⊗ I = A = I ⊗ A
follow from the closure of cA. Associativity is a bit trickier. We first work in terms of effects in order
to take advantage of Lemma 4.6. Applying this to an effect π ∈ c∗(A⊗B)⊗C gives:


∀ Ψ ∈ c(A⊗B)⊗C .

Ψ

π
= 1

 ⇐⇒


∀ Ψ ∈ cA⊗B, ξ ∈ cC .

Ψ

π

ξ

= 1



⇐⇒


∀ ψ ∈ cA, φ ∈ cB, ξ ∈ cC .

π

ξψ φ

= 1



29

Similarly, for π ∈ c∗A⊗(B⊗C)
∀ Ψ ∈ cA⊗(B⊗C) .

Ψ

π
= 1

 ⇐⇒


∀ ψ ∈ cA, Φ ∈ cB⊗C .

Φ

π

ψ

= 1



⇐⇒


∀ ψ ∈ cA, φ ∈ cB, ξ ∈ cC .

π

ξψ φ

= 1


Hence c∗(A⊗B)⊗C = c∗A⊗(B⊗C) so c(A⊗B)⊗C = cA⊗(B⊗C), which implies associativity of ⊗.

Next we show that ⊗ is well-defined on morphisms. For morphisms f : A→ A′, g : B→ B′, and
an effect π ∈ c∗A′⊗B′ , we have by Lemma 4.6:

∀ Ψ ∈ cA⊗B .

Ψ

π

f g = 1

 ⇐⇒


∀ ψ ∈ cA, φ ∈ cB .

π

f g

ψ φ

= 1


The RHS holds since f ◦ ψ ∈ cA′ and g ◦ φ ∈ cB′ . From the LHS above, we can conclude that
f ⊗ g : A⊗ B→ A′ ⊗ B′ is a morphism in Caus[C].

Finally, it remains to show that the swap is a morphism in Caus[C]. By Proposition 4.4, this is the
case when, for all π ∈ c∗B⊗A, we have:

π

B A

A B

∈ c∗A⊗B

This again follows by relying on Lemma 4.6.

Lemma. The transposition functor (−)∗ : Cop → C:

A 7→ A∗ f ∗
A∗

B∗
:= f

A∗

B∗

B

7→f

A

(28)

lifts to a full and faithful functor (−)∗ : Caus[C]op → Caus[C], where A∗ := (A∗, cA∗).

Proof. Note that c∗B = cB∗ , by definition, and cA = c∗∗A = (cA∗)
∗. Hence, for f : A→ B we have:

∀ ρ ∈ cA, π ∈ c∗B .

π

ρ

f = 1


⇐⇒



∀ π ∈ cB∗ , ρ ∈ (cA∗)
∗ .

f

π

ρ

= 1


30

so f ∗ : B∗ → A∗ is a morphism in Caus[C]. Just as with the functor (−)∗ in C, ((−)∗)∗ = IdCaus[C],
so fullness and faithfulness is immediate.

Theorem. For any precausal category C, Caus[C] is a ∗-autonomous category where I = I∗.

Proof. We have already shown that Caus[C] is an SMC (Theorem 4.7) with a full and faithful functor
(−)∗ : Caus[C]op → Caus[C] (Lemma 4.8). Consider objects A, B, C in Caus[C]. The underlying
object of B(C is:

(B⊗ C∗)∗ = B∗ ⊗ C∗∗ = B∗ ⊗ C

Since C is compact closed, there is a natural isomorphism:

C(A⊗ B, C) ∼= C(A, B∗ ⊗ C)

given by:

f

B

C

A

7→

A

CB∗

f
=: g

A

CB∗

whose inverse is:

g

A

CB∗

7→ g

A

C

B

= f

B

C

A

Indeed this is how one shows that compact closed categories are in fact closed. Thus, it suffices to
show that:

f ∈ Caus[C](A⊗ B, C) ⇐⇒ g ∈ Caus[C](A, B(C)

31

This follows from Lemma (4.6):

f ∈ Caus[C](A⊗ B, C) ⇐⇒



∀ρ ∈ cA⊗B, π ∈ c∗C .

f

π

ρ

= 1



⇐⇒



∀ρ1 ∈ cA, ρ2 ∈ cB, π ∈ c∗C .

f

ρ1 ρ2

π

= 1



⇐⇒



∀ρ1 ∈ cA, ρ2 ∈ c∗B∗ , π ∈ c∗C .

f

ρ1

πρ2

= 1


⇐⇒ g ∈ Caus[C](A, B(C)

Finally, I = I∗ follows from the fact that I = I∗ and

c∗I = {λ | 1λ = 1} = {1} = cI

Proofs that Mat(R+) and CPM are precausal

Theorem. Mat(R+) is a precausal category.

Proof. (C1) was given in Example 3.2. (C2) is immediate, and (C3) follows from the fact that one can
always construct a basis for a vector space out of probability distributions, e.g. by taking the point
distributions. To show (C4), we will decompose into (C4′) and (C5′) via Proposition 3.7.

So, we turn to (C4′):


∃ Φ′ causal .

Φ = Φ′

 =⇒


∃ Φ1, Φ2 causal .

Φ =
Φ1

Φ2


In terms of a conditional probability distribution P(B1B2|A1 A2), the premise above amounts to the
usual non-signalling condition:

P(B1|A1 A2) = P(B1|A1)

32

Hence the conclusion follows from the product rule:

P(B1B2|A1 A2) = P(B1|A1 A2)P(B2|B1 A1 A2)

= P(B1|A1)P(B2|B1 A1 A2)

More precisely, suppose Φkl
ij is a stochastic matrix such that there exists another stochastic matrix

(Φ′)k
i where:

∑
l

Φkl
ij = (Φ′)k

i

Then, let:

(Φ1)
ki′k′
i = (Φ′)k

i δii′δkk′

(Φ2)
l
i′k′ j =

{
δ0l if (Φ′)k′

i = 0
Φk′ l

ij /(Φ′)k′
i otherwise

where δij is the Kronecker delta. One can straightforwardly verify that these are both stochastic
matrices. Let Ψkl

ij be the result of plugging outputs i′, k′ of Φ1 into those inputs for Φ2, i.e.

Ψkl
ij := ∑

i′k′
(Φ1)

ki′k′
i (Φ2)

l
i′k′ j = (Φ′)k

i (Φ2)
l
ikj

If (Φ′)k
i = 0, then both Φkl

ij and Ψkl
ij are 0 for all j, l. So, suppose (Φ′)k

i 6= 0. Then:

Ψkl
ij = (Φ′)k

i (Φ
kl
ij /(Φ′)k

i) = Φkl
ij

For (C5′), let wi
j be the matrix of a second-order causal effect w : A⊗ B∗. Then for all stochastic

matrices Φj
i , we have:

∑
ij

wi
jΦ

j
i = 1

For some fixed column m, and fixed rows n 6= n′, the following matrix:

1 = Φj
i =


p i = m, j = n
1− p i = m, j = n′

0 i = m, j 6= n, j 6= n′

δ
j
i i 6= m

defines a stochastic map for any p ∈ [0, 1]. Then:

∑
ij

wi
jΦ

j
i = pwm

n + (1− p)wm
n′ + K = 1

where K doesn’t depend on p. Since we can freely vary p between 0 and 1, the only way to preserve
normalisation is if wm

n = wm
n′ . Hence, for all j, we have wi

j = wi
0. Defining ρi := wi

0 gives factorisation
(C5′).

Theorem. The category CPM is a precausal category.

33

Proof. As noted in Example 3.3, discarding processes satisfying (C1) are given by the trace. For (C2),
dB(H) = dim(H), which is invertible whenever dim(H) 6= 0. (C3) follows from the fact that for any
finite-dimensional Hilbert space H, we can find a basis of positive operators spanning B(H). Hence,
by renormalising, we can also find a basis of trace-1 positive operators.

For (C4), we shall show (C4′) and (C5′).
Condition (C4′) states that

trB′(Φ) = Φ′ =⇒ Φ = (1A′ ⊗Φ2) ◦ (Φ1 ⊗ 1B)

This is precisely the result of [14] and is based on the fact that minimal Stinespring dilations are
related by a unitary.

For (C5′), a causal map Φ : A → B in CPM is a completely positive trace preserving map which
we may consider as a state in A∗ ⊗ B. Recall that there exists a basis of A∗ and of B which contain
the identity and are orthogonal w.r.t. the trace. We can then write

Φ
j

i
= +∑i 6=0,j

1
dB

ri,j

Now if any second order causal effect w does not split as in (C5′), we can always change the value
of some of the ri,j such that Φ is still positive, but w(Φ) 6= 1.

34

	Introduction
	Preliminaries
	Precausal categories
	Constructing Caus[C]
	First order systems
	Higher-order systems
	One-way signalling and combs
	SOC2 and SOCn processes

	Conclusion and Future Work

