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Memory access

I So far, all access to resources was handled through �le-access
permissions

I Requesting a resource (�le) is done through syscalls

I Cannot do that for reading/writing memory

I Load/store instructions are very frequent in programs

I Speed of memory access largely determines the speed of many
programs

I System calls are expensive

I A load (from cache) can �nish in a few cycles

I A system call has some hundred cycles overhead

I OS still needs control over memory access of processes!
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Virtual memory

I Central idea:
I Don't let processes use addresses in physical memory
I Instead, use virtual addresses
I For each access to a virtual address, map to actual physical address

I Obviously, don't want to map byte-by-byte

I Chop the memory into pages of �xed size (typically 4KB)

I Use a page table to establish the mapping

I Essentially, use a di�erent page table for each process

I If there is no entry for a virtual address in a processes' page table:
exit with segmentation fault
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Advantages of virtual memory

I Processes can use (seemingly) contiguous memory locations

I Those addresses don't have to be contiguous in physical memory

I Can even assign more memory than is physically available

I Need to swap memory content to and from hard drive

I Can separate address spaces from di�erent programs!

I OS can now ensure that one process cannot read/write another
processes' memory

I Hmmm, but looking up addresses for each memory access doesn't
sound cheaper than a syscall. . .
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The MMU

I Mapping from virtual to physical addresses is done in hardware

I CPU has a Memory Management Unit (MMU), which performs the
mapping

I Typical setup:
I OS writes page table for processes to memory

I OS provides pointer to page table of current process to MMU
I This is done by writing a special control register, the page table base

register (PTBR)
I Access to this control register only from protection ring 0
I MMU looks up mapping from memory and remembers it in special

cache
I Page-table cache is called translation lookaside bu�er (TLB)

I Need to invalidate TLB content on context switch:
I Can �ush the whole TLB content
I Can mark the content invalid and �re-validate� when the process

comes back
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Shared memory

I Now we have memory of di�erent processes nicely separated

I However, sometimes we want processes to share memory

I Shared memory is an e�cient (and common) way for inter-process
communication (IPC)

I Unix o�ers syscalls for sharing memory:
I Can map a �le into memory with mmap() (with MAP_SHARED option)
I Can request shared memory with shm_open() or shmget()

I Shared-memory resources have access permissions similar to �les
I The �execute� �ag is ignored
I For shared memory we're basically back to �le access through syscalls
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Virtual memory and security

I Virtual memory gives the OS the possibility to separate memory of
di�erent processes

I One process (or user) can still provide input to another process

I Virtual memory does not say anything about what a process is doing
with its own memory!
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Why (OS) security fails

I UNIX and Linux assume that user processes behave benignly

I Assumption: process actions re�ect user intentions

I Mainly two ways why processes may be malicious:
I user accidently runs malware (more later in the lecture)
I process operates on maliciously crafted input that exploits bugs

I This is a problem of all mainstream �classical� operating systems!

I Some questions:

I Did you ever click on a link to a website?
I Did you ever open a pdf sent to you by e-mail?
I Did you ever plug a USB stick into your laptop?

I Ideal situation: OS enforces security:
I Clearly de�ned security goals (con�dentiality, integrity)
I All software outside the TBC can be arbitrarily malicious
I OS still enforces the security goals

I No current mainstream OS achieves this goal
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Reminder: Memory layout

The memory content of a process is segmented into:

I The code segment (or text segment): contains the program code

I The data segment: contains initialized static variables

I The bss segment: contains uninitialized (zeroed) static variables

I The heap: (memory allocated by malloc and released by free)

I The stack: local data and return addresses

I Memory mapping segment: �les, e.g., dynamic libraries mapped into
memory
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Reminder: The (x86) stack frame

Function call

void h() {

int x = 7;

int a = 6;

f(42, 123);

...

}

void f(int a, int b) {

char buf[20];

...

}

Call stack

--- stack frame for h ---

7

6

-------------------------

--- stack frame for f ---

123

42

return address to h

frame pointer to h

buf[19]

buf[18]

...

buf[0]

-------------------------
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A classic bu�er-over�ow attack

#include <stdio.h>

int vulnfunc(void) {

char *ret;

char buffer[100];

ret = gets(buffer);

printf(buffer);

printf("\n");

fflush(stdout);

if (ret == NULL) return 0;

else return 1;

}

int main(void) {

int ret = 1;

while (ret) {

ret = vulnfunc();

}

return 0;

}

I gets() reads into buffer

I Can write more than 100 bytes
to buffer

I Fill buffer with shell code

I Overwrite return address of
vulnfunc() with address of
shell code

I Can write some nops before
shell code (�nop slide�)

I Program will jump to shell code
and launch a shell
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A classic bu�er-over�ow: AMD64 shell code

"\x48\x31\xd2" // xor %rdx, %rdx

"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68" // mov $0x68732f6e69622f2f, %rbx

"\x48\xc1\xeb\x08" // shr $0x8, %rbx

"\x53" // push %rbx

"\x48\x89\xe7" // mov %rsp, %rdi

"\x52" // push %rdx

"\x57" // push %rdi

"\x48\x89\xe6" // mov %rsp, %rsi

"\xb0\x3b" // mov $0x3b, %al

"\x0f\x05" // syscall
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What can the OS do to help?

I Traditional model:
I User decided to run the program
I Program behaves benignly (why else would the user run it. . . ?)
I It's the user's problem

I Not really helpful with software today

I Two steps to the straight-forward attack:

1. Change program's control �ow
2. Inject and execute attacker's code

I OS can help to prevent in particular 2

I Compilers can help to prevent 1 (e.g, stack canaries)

I Modern operating systems in fact do help
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W ⊕X

I Real problem of 2. is the von-Neumann architecture

I Code and data share the same memory space

I Idea: Take this back (a little bit)

I Mark some areas of memory (stack, heap, data segment)
non-executable

I Such a countermeasure is called Data Execution Prevention (DEP)

I Other name: W ⊕X (�either write or execute�)

I Ideally this is implemented in the CPU's MMU

I Supported by many recent CPUs (e.g., AMD64, ARM)

I Various software solutions for CPUs without hardware support

I Software solutions add overhead to memory access
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Enabling/disabling NX

I Non-executable-stack bit is stored in the ELF header of a binary

I Linux by default supports NX stack

I gcc by default produces non-executable-stack binaries

I Disable NX in gcc: gcc -z execstack

I Disable NX on an existing binary: execstack -s BINARY

I Enable NX on an existing binary: execstack -c BINARY

I Disable NX for 32-bit binaries in Linux kernel:
I Boot parameter noexec=off (for x86)
I Boot parameter noexec32=off (for AMD64)

I Reasons to disable NX protection:
I Creating homework for Software and Websecurity
I Generally, trying out �classical� attacks
I Some programs need executable stack!
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Return to libc

I Attacker cannot execute his code on the stack anymore

I Workaround: execute code that is already in the program

I (Almost) always mapped into the programs memory space: C
standard library

I Idea: put suitable arguments for system() somewhere in memory
(e.g., "/bin/sh")

I Overwrite the return address to point to system()

I For clean exit, set return address of system to address of exit()

I Obtain the address of libc with
cat /proc/$PID/maps | grep libc

I Obtain the o�set of system() and exit() through

nm -D /lib/x86_64-linux-gnu/libc.so.6 | grep system
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Return to libc ctd.

I Place the string "/bin/sh" somewhere and obtain its address

I Write behind bu�er

1. Address of system()
2. Address of exit()
3. Address of "/bin/sh"

I Address of system() must overwrite return address in current frame

I Code will return to system() with
I return address pointing to exit(), and
I argument pointing to /bin/sh

I Note: This is the layout for x86

I AMD64 needs slightly di�erent layout (see homework)
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Countermeasures

I Can make sure that \0 is in the address of libc

I Many functions (like gets) won't read past the \0

I Does not generally help, can over�ow some bu�ers also with \0

I Can remove some critical functions from (reduced) libc

I Problems:
I Can break functionality
I What functions exactly can cause problems. . . ?
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ROP

I We do not have to return to libc functions

I Can also return to arbitrary addresses

I Can chain such returns, if each targeted block ends in return

I Attack idea: Collect pieces of code from binary (each ending in
return)

I Chain these pieces to an attack program

I This idea is called return-oriented programming

I Concept introduced by Shacham in 2007

I Collected pieces of code are called gadgets

I Attacker now has to program with �gadget-instructions�

I Slight generalization: Can also use gadgets ending in jumps

I Important concept: can obtain malicious computation without
malicious code!

I Searching for gadgets (and to some extent chaining) can be
automated
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ASLR

I Return to libc and ROP need to know the addresses of code

I Idea: randomize position of dynamic libraries

I This approach is called address space layout randomization (ASLR)

I Does not only randomize position of dynamic libraries, but also:
I position of stack
I position of data segment
I position of heap

I To also randomize the position of the binary itself need to use
gcc -fpie

I pie stands for �position independent execution�

I Disable ASLR in Linux:
echo 0 > /proc/sys/kernel/randomize_va_space

or boot with parameter norandmaps

I Disable ASLR for one process:
setarch `uname -m` -R PROGRAMNAME
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Attacks against ASLR

I ASLR is generally very e�ective as a defense

I Problem if address of one instruction leaks to the attacker:
I Format-string attacks
I Using over�ows to overwrite null-termination
I Memory content written to disk
I Software that uses non-randomized modules
I For a while, linux-gate.so.1 was not randomized
I . . .

I Problem on 32-bit machines: not enough entropy

I Cannot randomize lower 12 bits of address (that would break page
alignment)

I Cannot randomize upper 4 bits (limits capabilities of large memory
mappings)

I Result: only 16 bits of entropy (65536 possibilities)
I Shacham, Page, Pfa�, Goh, Modadugu, Boneh, 2004: brute-force

attack that took 216 seconds on average
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More things going wrong: race conditions

De�nition
A race condition bug is a bug where software behaviour depends on
uncontrollable timing behavior in an unintended way

An example: TOCTTOU

I Time gap between checking permissions and executing operation

I This is called time of check to time of use (TOCTTOU)

I Example: use access() syscall in suid-root program to check rights
against real user ID:

if (access("file", W_OK) != 0) {

exit(1);

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

I Attacker attempts to run symlink("/etc/shadow", "file");

between access() and open()
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A race condition in the Linux kernel

I Announced May 2014: race condition in the Linux kernel

I More speci�cally: in the pty (pseudo-terminal) subsystem

I Bug was there for about 5 years

I Bug allows an attacker to crash the kernel

I Bug allows an attacker to obtain a root shell
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The pty subsystem

I A tty is a typewriter paired with an electromagnetic communication
channel

I In the old days: keyboard + screen and OS process (tty driver)
attached

I Today: Use terminal emulator (e.g., xterm) instead of screen

I Use pseudo-terminal (pty) device driver

I Job of the pty driver:
I Read input from one side
I Parse it for special characters (e.g., CTRL-C, backspace)
I Handle special characters (e.g, send SIGINT for CTRL-C)
I Forward the rest to the other side

I Important to notice: Two processes can write to the same pty

I Call sequence from userspace program to pty bu�er:
write(pty_fd) in userspace → sys_write() in kernelspace →
tty_write() → pty_write() →
tty_insert_flip_string_fixed_flag()
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The vulnerable code

int tty_insert_flip_string_fixed_flag(struct tty_struct *tty,

const unsigned char *chars,

char flag, size_t size)

{

int copied = 0;

do {

int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);

int space = tty_buffer_request_room(tty, goal);

struct tty_buffer *tb = tty->buf.tail;

if (unlikely(space == 0))

break;

memcpy(tb->char_buf_ptr + tb->used, chars, space);

memset(tb->flag_buf_ptr + tb->used, flag, space);

tb->used += space;

copied += space; chars += space;

} while (unlikely(size > copied));

return copied;

}

OS Security � Memory 25



The race condition

Assume two processes write to the same pty

Process A

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A �ll the bu�er(s) and increase used

I memcpy(s) of B will write behind the bu�er

I Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/

exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.

html

OS Security � Memory 26

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


The race condition

Assume two processes write to the same pty

Process A

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A �ll the bu�er(s) and increase used

I memcpy(s) of B will write behind the bu�er

I Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/

exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.

html

OS Security � Memory 26

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


The race condition

Assume two processes write to the same pty

Process A

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A �ll the bu�er(s) and increase used

I memcpy(s) of B will write behind the bu�er

I Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/

exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.

html

OS Security � Memory 26

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


The race condition

Assume two processes write to the same pty

Process A

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A �ll the bu�er(s) and increase used

I memcpy(s) of B will write behind the bu�er

I Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/

exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.

html

OS Security � Memory 26

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


The race condition

Assume two processes write to the same pty

Process A

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A �ll the bu�er(s) and increase used

I memcpy(s) of B will write behind the bu�er

I Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/

exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.

html

OS Security � Memory 26

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


The race condition

Assume two processes write to the same pty

Process A

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A �ll the bu�er(s) and increase used

I memcpy(s) of B will write behind the bu�er

I Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/

exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.

html

OS Security � Memory 26

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


The race condition

Assume two processes write to the same pty

Process A

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I tb->used += space;

Process B

I tty_buffer_request_room

I memcpy(buf+tb->used,...)

I memcpy(s) of A �ll the bu�er(s) and increase used

I memcpy(s) of B will write behind the bu�er

I Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/

exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.

html

OS Security � Memory 26

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

