OS Security

Memory

Radboud University, Nijmegen, The Netherlands

£ %
S E
== ()
1, &
MiNe

Winter 2016/2017



Memory access

» So far, all access to resources was handled through file-access
permissions

» Requesting a resource (file) is done through syscalls
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So far, all access to resources was handled through file-access
permissions

Requesting a resource (file) is done through syscalls
Cannot do that for reading/writing memory
Load/store instructions are very frequent in programs

Speed of memory access largely determines the speed of many
programs

System calls are expensive
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» So far, all access to resources was handled through file-access
permissions

Requesting a resource (file) is done through syscalls
Cannot do that for reading/writing memory
Load/store instructions are very frequent in programs
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Speed of memory access largely determines the speed of many
programs

> System calls are expensive

v

A load (from cache) can finish in a few cycles

v

A system call has some hundred cycles overhead
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Memory access
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So far, all access to resources was handled through file-access
permissions

Requesting a resource (file) is done through syscalls
Cannot do that for reading/writing memory
Load/store instructions are very frequent in programs

Speed of memory access largely determines the speed of many
programs

System calls are expensive

A load (from cache) can finish in a few cycles

A system call has some hundred cycles overhead

OS still needs control over memory access of processes!
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Virtual memory

» Central idea:

> Don’t let processes use addresses in physical memory
> Instead, use virtual addresses
» For each access to a virtual address, map to actual physical address
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» Central idea:

> Don’t let processes use addresses in physical memory
> Instead, use virtual addresses
» For each access to a virtual address, map to actual physical address

» Obviously, don't want to map byte-by-byte
» Chop the memory into pages of fixed size (typically 4KB)
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Virtual memory
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Central idea:
> Don’t let processes use addresses in physical memory
> Instead, use virtual addresses
» For each access to a virtual address, map to actual physical address

v

Obviously, don't want to map byte-by-byte

v

Chop the memory into pages of fixed size (typically 4KB)

v

Use a page table to establish the mapping
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Virtual memory
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Central idea:

> Don’t let processes use addresses in physical memory
> Instead, use virtual addresses
» For each access to a virtual address, map to actual physical address

Obviously, don't want to map byte-by-byte

Chop the memory into pages of fixed size (typically 4KB)
Use a page table to establish the mapping

Essentially, use a different page table for each process

If there is no entry for a virtual address in a processes’ page table:
exit with segmentation fault
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Advantages of virtual memory

» Processes can use (seemingly) contiguous memory locations

» Those addresses don't have to be contiguous in physical memory
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Advantages of virtual memory

Processes can use (seemingly) contiguous memory locations
Those addresses don't have to be contiguous in physical memory
Can even assign more memory than is physically available

Need to swap memory content to and from hard drive
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Advantages of virtual memory
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Processes can use (seemingly) contiguous memory locations
Those addresses don't have to be contiguous in physical memory
Can even assign more memory than is physically available

Need to swap memory content to and from hard drive

Can separate address spaces from different programs!

OS can now ensure that one process cannot read/write another
processes’ memory
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Advantages of virtual memory
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Processes can use (seemingly) contiguous memory locations
Those addresses don't have to be contiguous in physical memory
Can even assign more memory than is physically available

Need to swap memory content to and from hard drive

Can separate address spaces from different programs!

OS can now ensure that one process cannot read/write another
processes’ memory

Hmmm, but looking up addresses for each memory access doesn’t
sound cheaper than a syscall. ..
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The MMU

» Mapping from virtual to physical addresses is done in hardware
» CPU has a Memory Management Unit (MMU), which performs the
mapping
» Typical setup:
> OS writes page table for processes to memory
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The MMU

» Mapping from virtual to physical addresses is done in hardware
» CPU has a Memory Management Unit (MMU), which performs the
mapping
» Typical setup:
> OS writes page table for processes to memory
» OS provides pointer to page table of current process to MMU
> This is done by writing a special control register, the page table base
register (PTBR)
> Access to this control register only from protection ring 0
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» Mapping from virtual to physical addresses is done in hardware
» CPU has a Memory Management Unit (MMU), which performs the
mapping
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> OS writes page table for processes to memory
» OS provides pointer to page table of current process to MMU
> This is done by writing a special control register, the page table base
register (PTBR)
> Access to this control register only from protection ring 0
» MMU looks up mapping from memory and remembers it in special
cache
> Page-table cache is called translation lookaside buffer (TLB)
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The MMU

» Mapping from virtual to physical addresses is done in hardware

» CPU has a Memory Management Unit (MMU), which performs the
mapping
» Typical setup:
> OS writes page table for processes to memory
» OS provides pointer to page table of current process to MMU
> This is done by writing a special control register, the page table base
register (PTBR)
> Access to this control register only from protection ring 0
» MMU looks up mapping from memory and remembers it in special
cache
> Page-table cache is called translation lookaside buffer (TLB)

» Need to invalidate TLB content on context switch:

» Can flush the whole TLB content
> Can mark the content invalid and “re-validate” when the process
comes back
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Shared memory

» Now we have memory of different processes nicely separated
» However, sometimes we want processes to share memory

» Shared memory is an efficient (and common) way for inter-process
communication (IPC)
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Shared memory

v

Now we have memory of different processes nicely separated

However, sometimes we want processes to share memory

v

Shared memory is an efficient (and common) way for inter-process
communication (IPC)

v

v

Unix offers syscalls for sharing memory:
> Can map a file into memory with mmap () (with MAP_SHARED option)
> Can request shared memory with shm_open() or shmget ()
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Shared memory

v

Now we have memory of different processes nicely separated

However, sometimes we want processes to share memory

v

v

Shared memory is an efficient (and common) way for inter-process
communication (IPC)

v

Unix offers syscalls for sharing memory:
> Can map a file into memory with mmap () (with MAP_SHARED option)
> Can request shared memory with shm_open() or shmget ()
> Shared-memory resources have access permissions similar to files
» The “execute” flag is ignored
> For shared memory we're basically back to file access through syscalls
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Virtual memory and security

» Virtual memory gives the OS the possibility to separate memory of
different processes
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Virtual memory and security

» Virtual memory gives the OS the possibility to separate memory of
different processes

» One process (or user) can still provide input to another process

» Virtual memory does not say anything about what a process is doing
with its own memory!
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Why (OS) security fails

» UNIX and Linux assume that user processes behave benignly
» Assumption: process actions reflect user intentions
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Why (OS) security fails

» UNIX and Linux assume that user processes behave benignly
» Assumption: process actions reflect user intentions
» Mainly two ways why processes may be malicious:

> user accidently runs malware (more later in the lecture)
> process operates on maliciously crafted input that exploits bugs
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Why (OS) security fails

v

UNIX and Linux assume that user processes behave benignly

v

Assumption: process actions reflect user intentions

v

Mainly two ways why processes may be malicious:

> user accidently runs malware (more later in the lecture)
> process operates on maliciously crafted input that exploits bugs

v

This is a problem of all mainstream “classical” operating systems!
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Why (OS) security fails

v

UNIX and Linux assume that user processes behave benignly

v

Assumption: process actions reflect user intentions

v

Mainly two ways why processes may be malicious:

> user accidently runs malware (more later in the lecture)
> process operates on maliciously crafted input that exploits bugs

v

This is a problem of all mainstream “classical” operating systems!

v

Some questions:
» Did you ever click on a link to a website?
» Did you ever open a pdf sent to you by e-mail?
> Did you ever plug a USB stick into your laptop?

v

Ideal situation: OS enforces security:

> Clearly defined security goals (confidentiality, integrity)
> All software outside the TBC can be arbitrarily malicious
> OS still enforces the security goals
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Why (OS) security fails

» UNIX and Linux assume that user processes behave benignly
» Assumption: process actions reflect user intentions
» Mainly two ways why processes may be malicious:

> user accidently runs malware (more later in the lecture)

> process operates on maliciously crafted input that exploits bugs
» This is a problem of all mainstream “classical” operating systems!
» Some questions:

» Did you ever click on a link to a website?

» Did you ever open a pdf sent to you by e-mail?

> Did you ever plug a USB stick into your laptop?
> ldeal situation: OS enforces security:

> Clearly defined security goals (confidentiality, integrity)
> All software outside the TBC can be arbitrarily malicious
> OS still enforces the security goals

» No current mainstream OS achieves this goal
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Reminder: Memory layout

The memory content of a process is segmented into:

» The code segment (or text segment): contains the program code
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Reminder: Memory layout

The memory content of a process is segmented into:
» The code segment (or text segment): contains the program code
» The data segment: contains initialized static variables
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Reminder: Memory layout

The memory content of a process is segmented into:
» The code segment (or text segment): contains the program code
» The data segment: contains initialized static variables

» The bss segment: contains uninitialized (zeroed) static variables
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Reminder: Memory layout

The memory content of a process is segmented into:

The code segment (or text segment): contains the program code
The data segment: contains initialized static variables

The bss segment: contains uninitialized (zeroed) static variables
The heap: (memory allocated by malloc and released by free)

v

vV v v
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Reminder: Memory layout

The memory content of a process is segmented into:
» The code segment (or text segment): contains the program code

The data segment: contains initialized static variables

The heap: (memory allocated by malloc and released by free)

>
» The bss segment: contains uninitialized (zeroed) static variables
>
» The stack: local data and return addresses
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Reminder: Memory layout

The memory content of a process is segmented into:

The code segment (or text segment): contains the program code
The data segment: contains initialized static variables

The bss segment: contains uninitialized (zeroed) static variables

The heap: (memory allocated by malloc and released by free)

v

The stack: local data and return addresses

vV v.v. v Yy

Memory mapping segment: files, e.g., dynamic libraries mapped into
memory
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Reminder: The (x86) stack frame

Function call Call stack
void h() { --- stack frame for h ---
int x = 7; 7
int a = 6; 6
£(42, 123);
--- stack frame for f ---
} 123
42
void f(int a, int b) { return address to h
char buf[20]; frame pointer to h
- buf [19]
} buf [18]
buf [0]

OS Security — Memory
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A classic buffer-overflow attack

#include <stdio.h> > gets() reads into buffer

» Can write more than 100 bytes

int vulnfunc(void) { to buffer

char *ret;

char buffer[100];

ret = gets(buffer);

printf (buffer);

printf("\n");

fflush(stdout);

if (ret == NULL) return O;

else return 1;

}

int main(void) {
int ret = 1;
while (ret) {
ret = vulnfunc();
}
return 0;

} OS Security — Memory



A classic buffer-overflow attack

#include <stdio.h>

int vulnfunc(void) {
char *ret;
char buffer[100];
ret = gets(buffer);
printf (buffer);
printf("\n");
fflush(stdout);
if (ret == NULL) return O;
else return 1;

}

int main(void) {
int ret = 1;
while (ret) {
ret = vulnfunc();
}
return 0;

}

v

v

v

v

gets() reads into buffer

Can write more than 100 bytes
to buffer

Fill buffer with shell code

Overwrite return address of
vulnfunc () with address of
shell code
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A classic buffer-overflow attack

#include <stdio.h>

int vulnfunc(void) {
char *ret;
char buffer[100];
ret = gets(buffer);
printf (buffer);
printf("\n");
fflush(stdout);
if (ret == NULL) return O;
else return 1;

}

int main(void) {
int ret = 1;
while (ret) {
ret = vulnfunc();
}
return 0;

}

gets() reads into buffer

Can write more than 100 bytes
to buffer

Fill buffer with shell code

Overwrite return address of
vulnfunc () with address of
shell code

Can write some nops before
shell code (“nop slide™)

Program will jump to shell code
and launch a shell

OS Security — Memory

11



A classic buffer-overflow: AMDG64 shell code

"\x48\x31\xd2"
"\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68"
"\x48\xc1\xeb\x08"

" \X53 "

"\x48\x89\xe7"

n \X52 n

n \X57 "

"\x48\x89\xe6"

"\xb0\x3b"

"\x0£\x05"

//

xor Y%rdx, %rdx

mov $0x68732f6e69622f2f, Y%rbx
shr $0x8, %rbx

push %rbx

mov %rsp, %rdi

push %rdx

push %rdi

mov }rsp, hrsi

mov $0x3b, %al

syscall
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What can the OS do to help?

» Traditional model:

> User decided to run the program
> Program behaves benignly (why else would the user run it...?7)
> It's the user’s problem
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Program behaves benignly (why else would the user run it...?7)
It's the user's problem

Not really helpful with software today

vvyy
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» Traditional model:

v

User decided to run the program

Program behaves benignly (why else would the user run it...?7)
It's the user's problem

Not really helpful with software today
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» Two steps to the straight-forward attack:

1. Change program’s control flow
2. Inject and execute attacker’s code
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What can the OS do to help?

Traditional model:

v

v

User decided to run the program

Program behaves benignly (why else would the user run it...?7)
It's the user's problem

Not really helpful with software today

vvyy

v

Two steps to the straight-forward attack:

1. Change program’s control flow
2. Inject and execute attacker’s code

v

OS can help to prevent in particular 2

v

Compilers can help to prevent 1 (e.g, stack canaries)

v

Modern operating systems in fact do help

OS Security — Memory
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WoeX

» Real problem of 2. is the von-Neumann architecture
» Code and data share the same memory space
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WoeX

Real problem of 2. is the von-Neumann architecture
Code and data share the same memory space
Idea: Take this back (a little bit)

Mark some areas of memory (stack, heap, data segment)
non-executable

vV v v v

v

Such a countermeasure is called Data Execution Prevention (DEP)
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Mark some areas of memory (stack, heap, data segment)
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Such a countermeasure is called Data Execution Prevention (DEP)

> Other name: W @ X (“either write or execute”)
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Idea: Take this back (a little bit)

Mark some areas of memory (stack, heap, data segment)
non-executable

Such a countermeasure is called Data Execution Prevention (DEP)
Other name: W @ X (“either write or execute”)

Ideally this is implemented in the CPU's MMU

Supported by many recent CPUs (e.g., AMD64, ARM)
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WoeX
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Real problem of 2. is the von-Neumann architecture
Code and data share the same memory space
Idea: Take this back (a little bit)

Mark some areas of memory (stack, heap, data segment)
non-executable

Such a countermeasure is called Data Execution Prevention (DEP)
Other name: W @ X (“either write or execute”)

Ideally this is implemented in the CPU's MMU

Supported by many recent CPUs (e.g., AMD64, ARM)

Various software solutions for CPUs without hardware support
Software solutions add overhead to memory access

OS Security — Memory
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Enabling/disabling NX

» Non-executable-stack bit is stored in the ELF header of a binary
» Linux by default supports NX stack

» gcc by default produces non-executable-stack binaries
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Enabling/disabling NX
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gcc by default produces non-executable-stack binaries
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Disable NX in gcc: gecc -z execstack
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gcc by default produces non-executable-stack binaries
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Disable NX on an existing binary: execstack -s BINARY
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Enable NX on an existing binary: execstack -c BINARY
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Non-executable-stack bit is stored in the ELF header of a binary
Linux by default supports NX stack

gcc by default produces non-executable-stack binaries

Disable NX in gcc: gecc -z execstack

Disable NX on an existing binary: execstack -s BINARY
Enable NX on an existing binary: execstack -c BINARY

Disable NX for 32-bit binaries in Linux kernel:

> Boot parameter noexec=off (for x86)
> Boot parameter noexec32=off (for AMD64)
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Enabling/disabling NX
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Non-executable-stack bit is stored in the ELF header of a binary
Linux by default supports NX stack

gcc by default produces non-executable-stack binaries

Disable NX in gcc: gecc -z execstack

Disable NX on an existing binary: execstack -s BINARY
Enable NX on an existing binary: execstack -c BINARY

Disable NX for 32-bit binaries in Linux kernel:

> Boot parameter noexec=off (for x86)
> Boot parameter noexec32=off (for AMD64)

Reasons to disable NX protection:

> Creating homework for Software and Websecurity
> Generally, trying out “classical” attacks
» Some programs need executable stack!
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Return to libc

> Attacker cannot execute his code on the stack anymore
» Workaround: execute code that is already in the program

» (Almost) always mapped into the programs memory space: C
standard library
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Return to libc

> Attacker cannot execute his code on the stack anymore
» Workaround: execute code that is already in the program

» (Almost) always mapped into the programs memory space: C
standard library

> |dea: put suitable arguments for system() somewhere in memory
(e.g., "/bin/sh")

» Overwrite the return address to point to system()

» For clean exit, set return address of system to address of exit ()
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Return to libc

> Attacker cannot execute his code on the stack anymore
» Workaround: execute code that is already in the program

» (Almost) always mapped into the programs memory space: C
standard library

> |dea: put suitable arguments for system() somewhere in memory
(e.g., "/bin/sh")

» Overwrite the return address to point to system()
» For clean exit, set return address of system to address of exit ()

» Obtain the address of 1ibc with
cat /proc/$PID/maps | grep libc

» Obtain the offset of system() and exit() through
nm -D /1ib/x86_64-linux-gnu/libc.so.6 | grep system
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Return to libc ctd.

v

Place the string "/bin/sh" somewhere and obtain its address
Write behind buffer

1. Address of system()
2. Address of exit ()
3. Address of "/bin/sh"

Address of system() must overwrite return address in current frame

v

v

v

Code will return to system() with

> return address pointing to exit (), and
> argument pointing to /bin/sh
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Return to libc ctd.

v

Place the string "/bin/sh" somewhere and obtain its address
Write behind buffer

1. Address of system()
2. Address of exit ()
3. Address of "/bin/sh"

Address of system() must overwrite return address in current frame

v

v

» Code will return to system() with
> return address pointing to exit (), and
> argument pointing to /bin/sh
» Note: This is the layout for x86
> AMDG64 needs slightly different layout (see homework)

OS Security — Memory
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Countermeasures

» Can make sure that \0 is in the address of libc

» Many functions (like gets) won't read past the \0
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Countermeasures

» Can make sure that \O is in the address of libc
» Many functions (like gets) won't read past the \0
» Does not generally help, can overflow some buffers also with \0
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Countermeasures

Can make sure that \0 is in the address of libc
Many functions (like gets) won't read past the \0
Does not generally help, can overflow some buffers also with \0

Can remove some critical functions from (reduced) libc

vV v v v .Y

Problems:

» Can break functionality
» What functions exactly can cause problems...?
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ROP

» We do not have to return to libc functions
» Can also return to arbitrary addresses
» Can chain such returns, if each targeted block ends in return
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ROP

vV v v v

v

We do not have to return to libc functions
Can also return to arbitrary addresses
Can chain such returns, if each targeted block ends in return

Attack idea: Collect pieces of code from binary (each ending in
return)

Chain these pieces to an attack program
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We do not have to return to libc functions
Can also return to arbitrary addresses
Can chain such returns, if each targeted block ends in return

Attack idea: Collect pieces of code from binary (each ending in
return)

» Chain these pieces to an attack program

» This idea is called return-oriented programming

Concept introduced by Shacham in 2007
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We do not have to return to libc functions
Can also return to arbitrary addresses
Can chain such returns, if each targeted block ends in return

Attack idea: Collect pieces of code from binary (each ending in
return)

Chain these pieces to an attack program

This idea is called return-oriented programming
Concept introduced by Shacham in 2007
Collected pieces of code are called gadgets

Attacker now has to program with “gadget-instructions”
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We do not have to return to libc functions
Can also return to arbitrary addresses
Can chain such returns, if each targeted block ends in return

Attack idea: Collect pieces of code from binary (each ending in
return)

Chain these pieces to an attack program

This idea is called return-oriented programming

Concept introduced by Shacham in 2007

Collected pieces of code are called gadgets

Attacker now has to program with “gadget-instructions”
Slight generalization: Can also use gadgets ending in jumps
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We do not have to return to libc functions
Can also return to arbitrary addresses
Can chain such returns, if each targeted block ends in return

Attack idea: Collect pieces of code from binary (each ending in
return)

Chain these pieces to an attack program

This idea is called return-oriented programming

Concept introduced by Shacham in 2007

Collected pieces of code are called gadgets

Attacker now has to program with “gadget-instructions”
Slight generalization: Can also use gadgets ending in jumps

Important concept: can obtain malicious computation without
malicious code!
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ROP
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We do not have to return to libc functions
Can also return to arbitrary addresses
Can chain such returns, if each targeted block ends in return

Attack idea: Collect pieces of code from binary (each ending in
return)

Chain these pieces to an attack program

This idea is called return-oriented programming

Concept introduced by Shacham in 2007

Collected pieces of code are called gadgets

Attacker now has to program with “gadget-instructions”
Slight generalization: Can also use gadgets ending in jumps

Important concept: can obtain malicious computation without
malicious code!

Searching for gadgets (and to some extent chaining) can be
automated
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ASLR

» Return to libc and ROP need to know the addresses of code

» Idea: randomize position of dynamic libraries
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ASLR

» Return to libc and ROP need to know the addresses of code
» Idea: randomize position of dynamic libraries

» This approach is called address space layout randomization (ASLR)

» Does not only randomize position of dynamic libraries, but also:
» position of stack
> position of data segment
» position of heap
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ASLR
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Return to libc and ROP need to know the addresses of code
Idea: randomize position of dynamic libraries
This approach is called address space layout randomization (ASLR)
Does not only randomize position of dynamic libraries, but also:
» position of stack

> position of data segment
» position of heap

To also randomize the position of the binary itself need to use
gcc -fpie

pie stands for “position independent execution”
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Return to libc and ROP need to know the addresses of code
Idea: randomize position of dynamic libraries
This approach is called address space layout randomization (ASLR)

Does not only randomize position of dynamic libraries, but also:

» position of stack
> position of data segment
» position of heap

To also randomize the position of the binary itself need to use
gcc -fpie

» pie stands for “position independent execution”

Disable ASLR in Linux:
echo 0 > /proc/sys/kernel/randomize_va_space
or boot with parameter norandmaps
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Return to libc and ROP need to know the addresses of code
Idea: randomize position of dynamic libraries
This approach is called address space layout randomization (ASLR)

Does not only randomize position of dynamic libraries, but also:
» position of stack
> position of data segment
» position of heap
To also randomize the position of the binary itself need to use
gcc -fpie

» pie stands for “position independent execution”

Disable ASLR in Linux:
echo 0 > /proc/sys/kernel/randomize_va_space
or boot with parameter norandmaps

Disable ASLR for one process:
setarch ‘uname -m¢ -R PROGRAMNAME
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Attacks against ASLR

» ASLR is generally very effective as a defense

» Problem if address of one instruction leaks to the attacker:

>

vVYy VvV VvVy

Format-string attacks

Using overflows to overwrite null-termination
Memory content written to disk

Software that uses non-randomized modules

For a while, 1inux-gate.so.1 was not randomized
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» Problem if address of one instruction leaks to the attacker:

> Format-string attacks

Using overflows to overwrite null-termination
Memory content written to disk

Software that uses non-randomized modules

For a while, 1inux-gate.so.1 was not randomized
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» Problem on 32-bit machines: not enough entropy

> Cannot randomize lower 12 bits of address (that would break page
alignment)
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» ASLR is generally very effective as a defense

» Problem if address of one instruction leaks to the attacker:
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Using overflows to overwrite null-termination

Memory content written to disk

Software that uses non-randomized modules

For a while, 1inux-gate.so.1 was not randomized
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» Problem on 32-bit machines: not enough entropy
> Cannot randomize lower 12 bits of address (that would break page
alignment)
» Cannot randomize upper 4 bits (limits capabilities of large memory
mappings)
> Result: only 16 bits of entropy (65536 possibilities)
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Attacks against ASLR

» ASLR is generally very effective as a defense

» Problem if address of one instruction leaks to the attacker:

>

vVYy VvV VvVy

Format-string attacks

Using overflows to overwrite null-termination
Memory content written to disk

Software that uses non-randomized modules

For a while, 1inux-gate.so.1 was not randomized

» Problem on 32-bit machines: not enough entropy

>

Cannot randomize lower 12 bits of address (that would break page
alignment)
Cannot randomize upper 4 bits (limits capabilities of large memory
mappings)

> Result: only 16 bits of entropy (65536 possibilities)
» Shacham, Page, Pfaff, Goh, Modadugu, Boneh, 2004: brute-force

attack that took 216 seconds on average
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More things going wrong: race conditions

Definition
A race condition bug is a bug where software behaviour depends on
uncontrollable timing behavior in an unintended way

An example: TOCTTOU

» Time gap between checking permissions and executing operation
» This is called time of check to time of use (TOCTTOU)
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More things going wrong: race conditions

Definition
A race condition bug is a bug where software behaviour depends on
uncontrollable timing behavior in an unintended way

An example: TOCTTOU

» Time gap between checking permissions and executing operation
» This is called time of check to time of use (TOCTTOU)

» Example: use access() syscall in suid-root program to check rights
against real user ID:
if (access("file", W_0K) !'= 0) {
exit(1);
}

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof (buffer));

OS Security — Memory

22



More things going wrong: race conditions

Definition
A race condition bug is a bug where software behaviour depends on
uncontrollable timing behavior in an unintended way

An example: TOCTTOU

» Time gap between checking permissions and executing operation
» This is called time of check to time of use (TOCTTOU)

» Example: use access() syscall in suid-root program to check rights
against real user ID:
if (access("file", W_0K) !'= 0) {
exit(1);
}

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof (buffer));

» Attacker attempts to run symlink("/etc/shadow", "file");
between access() and open()
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A race condition in the Linux kernel

» Announced May 2014: race condition in the Linux kernel
» More specifically: in the pty (pseudo-terminal) subsystem

» Bug was there for about 5 years

OS Security — Memory

23



A race condition in the Linux kernel

Announced May 2014: race condition in the Linux kernel
More specifically: in the pty (pseudo-terminal) subsystem
Bug was there for about 5 years

vV v . v Y

Bug allows an attacker to crash the kernel
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A race condition in the Linux kernel

Announced May 2014: race condition in the Linux kernel
More specifically: in the pty (pseudo-terminal) subsystem
Bug was there for about 5 years

Bug allows an attacker to crash the kernel

vV v . v v Yy

Bug allows an attacker to obtain a root shell
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The pty subsystem

> A tty is a typewriter paired with an electromagnetic communication
channel

> In the old days: keyboard + screen and OS process (tty driver)
attached
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> A tty is a typewriter paired with an electromagnetic communication
channel

v

In the old days: keyboard + screen and OS process (tty driver)
attached

v

Today: Use terminal emulator (e.g., xterm) instead of screen
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Use pseudo-terminal (pty) device driver
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The pty subsystem

> A tty is a typewriter paired with an electromagnetic communication
channel

> In the old days: keyboard + screen and OS process (tty driver)
attached

> Today: Use terminal emulator (e.g., xterm) instead of screen

» Use pseudo-terminal (pty) device driver

> Job of the pty driver:

> Read input from one side

> Parse it for special characters (e.g., CTRL-C, backspace)
> Handle special characters (e.g, send SIGINT for CTRL-C)
> Forward the rest to the other side
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The pty subsystem

> A tty is a typewriter paired with an electromagnetic communication
channel

> In the old days: keyboard + screen and OS process (tty driver)
attached

> Today: Use terminal emulator (e.g., xterm) instead of screen
» Use pseudo-terminal (pty) device driver

> Job of the pty driver:

> Read input from one side

> Parse it for special characters (e.g., CTRL-C, backspace)
> Handle special characters (e.g, send SIGINT for CTRL-C)
> Forward the rest to the other side

» Important to notice: Two processes can write to the same pty

» Call sequence from userspace program to pty buffer:
write(pty_£fd) in userspace — sys_write() in kernelspace —
tty_write() — pty_write() —
tty_insert_flip_string fixed_flag()
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The vulnerable code

int tty_insert_flip_string fixed_flag(struct tty_struct *tty,
const unsigned char *chars,
char flag, size_t size)
{
int copied = 0;
do {
int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
int space = tty_buffer_request_room(tty, goal);
struct tty_buffer *tb = tty->buf.tail;
if (unlikely(space == 0))
break;
memcpy (tb->char_buf_ptr + tb->used, chars, space);
memset (tb->flag_buf_ptr + tb->used, flag, space);
tb->used += space;
copied += space; chars += space;
} while (unlikely(size > copied));
return copied;

}
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The race condition

Assume two processes write to the same pty

Process A Process B
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» memcpy (buf+tb->used,...)
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The race condition

Assume two processes write to the same pty

Process A Process B

> tty_buffer_request_room
> tty_buffer_request_room

» memcpy (buf+tb->used,...)
> tb->used += space;
» memcpy (buf+tb->used,...)

» memcpy(s) of A fill the buffer(s) and increase used
» memcpy(s) of B will write behind the buffer
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The race condition

Assume two processes write to the same pty

Process A Process B
> tty_buffer_request_room
> tty_buffer_request_room
» memcpy (buf+tb->used,...)
> tb->used += space;

» memcpy (buf+tb->used,...)

» memcpy(s) of A fill the buffer(s) and increase used
» memcpy(s) of B will write behind the buffer

» Local-root exploit needs some more bits and pieces, for details see
http://blog.includesecurity.com/2014/06/
exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.
html
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