
Operating Systems Security – Assignment 2

Version 1.0 – 2016/2017
Due Date: 25 Nov 2016 (23:59 CET)

Institute for Computing and Information Sciences,
Radboud University, The Netherlands.

1 Play around with the setuid (suid) bit

In Week 1 lecture, you were introduced to the setuid bit. In this exercise, you will learn how to
carry out privilege escalation using suid.

Login to your (Kali) Linux system as a non-root user and download the program showdate from
https://www.cs.ru.nl/∼vmoonsamy/teaching/ossec2016/showdate (for 64-bit OS).

Then, change the owner
$ sudo chown root:root showdate
set the suid bit and make it executable
$ sudo chmod u+s,a+x showdate
Execute the program and verify it prints the date correctly
$./showdate
Fri Nov 18 xx:xx:xx EST 2016

Install the tool strace
$ sudo apt-get install strace
and run it to see system calls used by showdate
$ strace -f ./showdate

Objectives

a) Find out what the program does internally. What system calls does it use?
b) Assume the role of a non-privileged attacker. Use the program showdate to obtain a root shell.

You can verify if you succeeded by looking at the output of id, it should be something like:
$ /usr/bin/id
uid=0(root) gid=0(root) groups=0(root),27(sudo),1001(test1) Hand in the exact con-
sole commands you used to get this working.

c) Explain what a developer could do to overcome this issue. What explicit actions should a
developer take when writing software that is intended to be used with setuid-root to avoid
these types of problems?

https://www.cs.ru.nl/~vmoonsamy/teaching/ossec2016/showdate

2 Manually exploiting an application with a stack overflow

The most common buffer overflow is a stack overflow. In a stack overflow, a fixed size array (buffer)
is filled using a function that does not validate the size of the array (such as strcpy, gets, or scanf)
allowing malicious input to be written past the space allocated for the buffer.

Prerequisites

Login to your (Kali) Linux system as a non-root user and compile the program auth.c. You can
download auth.c here: https://www.cs.ru.nl/∼vmoonsamy/teaching/ossec2016/auth.c

#include <stdio.h>
#include <string.h>
#include <crypt.h>
#include <stdbool.h>
#include <libgen.h>
#include <stdlib.h>
#include <unistd.h>

void checkpass(char* input) {
char password[256];
char *hash1, *hash2;
bool correct = false;

strcpy(password,input);
hash1 = crypt(password,"$6$1122334455667788$");
hash2 = "$6$1122334455667788$vDzpRFs0Pl/L0M4/WXWsmv5/eTYlh5xoA"

"lMoPy512JiBLrAZTNzbL.uWv3ZI6XxFUYnFzRIX2kGXF9M133D4h1";

if (strcmp(hash1,hash2) == 0) {
correct = true;

} else {
printf("ERROR: password incorrect\n");

}

if (correct) {
printf("Starting root shell\n");
setuid(0);
setgid(0);
system("/bin/sh");

}
}

int main(int argc, char *argv[]) {
if (argc < 2) {

printf("syntax: %s <password>\n",basename(argv[0]));
return 1;

}
checkpass(argv[1]);
return 0;

}

and change the owner and set the suid bit with the following commands:
$ gcc -O0 -Wall -g -o auth auth.c -lcrypt
$ sudo chown root:root auth
$ sudo chmod u+s auth
For this exercise it is convenient to configure your gdb debugger environment first. Put the following
directives in the file .gdbinit, which is located in the home directory of your user ($HOME). This
can be done by executing the following commands:
$ echo "set history save" >> $HOME/.gdbinit
$ echo "set confirm off" >> $HOME/.gdbinit
$ echo "set disassemble-next-line on" >> $HOME/.gdbinit
$ echo "set disassembly-flavor intel" >> $HOME/.gdbinit
The gdb debugger can be used to analyze each executed instruction of the executable and observer
what is happening. To do this, there are two useful commands. The first one is step instruction (si),
which executes the instruction and will step into a sub-function which is trigged by a call instruction
(note, this also includes library functions). The second one next instruction (ni) executes regular
instructions similar to si, however, a call instruction is executed as if it was one instruction (so it
executes the whole sub-function at once).

https://www.cs.ru.nl/~vmoonsamy/teaching/ossec2016/auth.c

To start the gdb debugger and let it halt on the entry point of the executable we set a breakpoint
on the function main() and run r the program until it hits the breakpoint. Use the following
command to start debugging:
$ gdb -q auth -ex "b main" -ex "r"
Reading symbols from /home/google/test3/auth...done.
Breakpoint 1 at 0x400881: file auth.c, line 34.
warning: no loadable sections found in added symbol-file system-supplied DSO at 0x7ffff7ffa000

Breakpoint 1, main (argc=1, argv=0x7fffffffe438) at auth.c:34
34 if (argc < 2) {
=> 0x0000000000400881 <main+15>: 83 7d fc 01 cmp DWORD PTR [rbp-0x4],0x1

0x0000000000400885 <main+19>: 7f 28 jg 0x4008af <main+61>

(gdb) ni
0x0000000000400885 34 if (argc < 2) {

0x0000000000400881 <main+15>: 83 7d fc 01 cmp DWORD PTR [rbp-0x4],0x1
=> 0x0000000000400885 <main+19>: 7f 28 jg 0x4008af <main+61>

(gdb) ni
35 printf("syntax: %s <password>\n",basename(argv[0]));
=> 0x0000000000400887 <main+21>: 48 8b 45 f0 mov rax,QWORD PTR [rbp-0x10]

0x000000000040088b <main+25>: 48 8b 00 mov rax,QWORD PTR [rax]
0x000000000040088e <main+28>: 48 89 c7 mov rdi,rax
0x0000000000400891 <main+31>: e8 fa fd ff ff call 0x400690 <__xpg_basename@plt>
0x0000000000400896 <main+36>: 48 89 c6 mov rsi,rax
0x0000000000400899 <main+39>: bf 39 0a 40 00 mov edi,0x400a39
0x000000000040089e <main+44>: b8 00 00 00 00 mov eax,0x0
0x00000000004008a3 <main+49>: e8 a8 fd ff ff call 0x400650 <printf@plt>

The command examine memory x shows the program memory, like the first 64 bytes of the stack.
(gdb) x /64bx $rsp
On a 32-bit machine, use $esp instead of $rsp.

0x7fffffffe340: 0x38 0xe4 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe348: 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00
0x7fffffffe350: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe358: 0xad 0x8e 0x83 0xf7 0xff 0x7f 0x00 0x00
0x7fffffffe360: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7fffffffe368: 0x38 0xe4 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe370: 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00
0x7fffffffe378: 0x72 0x08 0x40 0x00 0x00 0x00 0x00 0x00

It also allows you to print variables values, like the pointer argv[0] to the executable path string.
(gdb) x /s argv[0]
0x7fffffffe6b3: "/home/google/test3/auth"

Or the total number of arguments, which is stored in argc.
(gdb) x /gx &argc
0x7fffffffe34c: 0x0000000000000001

Note, that pressing [Enter] executes the last command in gdb another time.

Objectives

a) Explain in detail what the program auth does, which (internal and external) function calls
it triggers and what type of libraries it uses. Explain how the cryptographic operations work
and state if you can think of a way to recover the password. Note, that mounting a password
recovery attack is not part of the assignment.

b) The following statement can be used to generate a large string.
$ python -c 'print("A"*512)'
Execute auth with the output of the previous statement as argument and observe the output.
$./auth $(python -c 'print("A"*512)')
Load the program in the debugger with the same arguments.
$ gdb -q auth -ex "b main" -ex "r $(python -c 'print("A"*512)')"
Start debugging and figure out what happens. Explain your analysis in detail and present the
list of gdb commands you used to analyse the control flow of the executable.

3 Know what your compiler is doing

The specified control flow of an executable should not be altered when different compiler options
are used. However, there might be differences in the unspecified behaviour. In this exercise we try
to understand what can happen happen in a different compiler optimization level is applied.

Prerequisites

Recompile the program auth with two different optimization levels -O0 and -O3. This time we let
gcc generate verbose and assembly listings with in-lined source code.

$ gcc -g -Wa,-adlhn=auth0.s -O0 -o auth0 auth.c -fverbose-asm -masm=intel -lcrypt
$ gcc -g -Wa,-adlhn=auth3.s -O3 -o auth3 auth.c -fverbose-asm -masm=intel -lcrypt
Note, that after re-compilation, you have to set the suid bit again.

$ sudo chown root:root auth0
$ sudo chmod u+s auth0
$ sudo chown root:root auth3
$ sudo chmod u+s auth3

Objectives

a) Try to exploit optimized build (auth3) the same way as explained in Section 2 and report the
output.

b) Compare the assembly listings auth0.s and auth3.s and quote the piece of assembly that
influences the buffer overflow behaviour. Explain why you think that the compiler changed the
control flow.

4 Exploit with use of Return Oriented Programming

The basics of Return Oriented Programming (ROP) is already handled in the Software Security
lecture1 and was discussed in the Week 2 lecture. There are also many well-written tutorials234567

that demonstrate how to mount a buffer overflow attack by using ROP.

This exercise tries to refresh your memory and let you mount a ROP attack on the program auth,
presented in Section 2 that was compiled with the optimization level -O3 (which will be performed
in Section 5).

Prerequisites

Compile the program auth with optimization level -O3:

$ gcc -O3 -Wall -g -o auth auth.c -lcrypt
$ sudo chown root:root auth
$ sudo chmod u+s auth

1 http://www.cs.ru.nl/E.Poll/ss/slides/2 BufferOverflows.pdf
2 http://insecure.org/stf/smashstack.html
3 https://crypto.stanford.edu/∼blynn/rop/
4 http://www.scs.stanford.edu/brop/
5 http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
6 http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to-return-oriented-programming
7 http://blog.osom.info/2012/04/return-oriented-programming-rop-exploit.html

http://www.cs.ru.nl/E.Poll/ss/slides/2_BufferOverflows.pdf
http://insecure.org/stf/smashstack.html
https://crypto.stanford.edu/~blynn/rop/
http://www.scs.stanford.edu/brop/
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to-return-oriented-programming
http://blog.osom.info/2012/04/return-oriented-programming-rop-exploit.html

Objectives

a) View the assembly of the binary file with:
$ objdump -M intel -S auth and locate the offset just after the statement

if (correct) {
printf("Starting root shell\n");

b) Use the previously recovered offset and put it in the following command by replacing the ######
and execute the command line.
$./auth $(python -c 'import struct; print("A"*264+struct.pack("<Q",0x######))')

c) Explain what happened and report the output that gdb produced when you executed it in the
debugger.

5 Protection mechanisms

In this exercise we explore some mitigation techniques that could be used to prevent the previous
attacks.

Prerequisites

Recompile auth with both optimization levels (-O0 and -O3), but this time we add the directive
-fstack-protector-all.
$ gcc -fstack-protector-all -O0 -Wall -g -o auth0 auth.c -lcrypt
$ gcc -fstack-protector-all -O3 -Wall -g -o auth3 auth.c -lcrypt

Objectives

a) Try to mount any of the previous attacks on both examples (with -fstack-protector-all)
and write down which combination work and which don’t. For each trial that failed, investigate
with the assembly listing of the gdb debugger why it did not work and explain which steps you
took to verify this.

b) Figure out if Address Space Layout Randomization (ASLR) is enabled on your (Kali) Linux
machine and explain why it can/cannot help to mitigate the stack problem8.

c) Does compilation with compiler flag -fpie protect against this attack?
d) Generate a memory map from the previously compiled binaries with the following command.

$ objdump -p auth
Locate the STACK segment and verify if it is executable or not. Explain why this will help/not
help against the previously mounted attacks.

8 http://en.wikipedia.org/wiki/Address space layout randomization

http://en.wikipedia.org/wiki/Address_space_layout_randomization

